Circulatory and metabolic effects of beta-adrenergic blockade in the hyperinsulinemic ovine fetus. 1993

B S Stonestreet, and E Le, and D J Berard
Brown University School of Medicine, Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Providence 02905.

Offspring of women with poorly controlled diabetes exhibit hypoxemia, elevated catecholamine concentration at birth, and an increased incidence of fetal death. Experimental fetal hyperinsulinemia results in increased catecholamine concentration and hemodynamic changes including increased combined ventricular output and vasodilation of select fetal organs. We hypothesized that insulin-induced catecholamine-mediated beta-adrenergic stimulation supports some of these hemodynamic changes in the hyperinsulinemic ovine fetus. To study this, 24 chronically instrumented fetal sheep receiving insulin for 24 h were exposed to beta-(propranolol),beta 1-(metoprolol), and beta 2-(ICI 118,551) adrenergic blockade. Insulin infusion resulted in hyperinsulinemic-hypoglycemia, a surge in epinephrine and norepinephrine concentration, and increases in the combined ventricular output and regional blood flow to the heart, adrenal glands, kidney, gastrointestinal tract, liver, fat, muscle, carcass, and placenta. In the hyperinsulinemic state, beta-adrenergic blockade was associated with significant reductions in the combined ventricular output and blood flow to fat, carcass, lungs, and the placenta; beta 1-blockade was associated with reductions in the combined ventricular output and blood flow to the lungs; and beta 2-adrenergic blockade was associated with reductions in blood flow to muscle and lungs. Because beta-adrenergic blockade was associated with reductions in placental blood flow during hyperinsulinemia, oxygen and glucose metabolism were also compromised. We conclude that in the hyperinsulinemic-hypoglycemic normoxemic ovine fetus, insulin-induced catecholamine-mediated hemodynamic changes are modulated in part by beta-adrenergic receptor stimulation.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D001775 Blood Circulation The movement of the BLOOD as it is pumped through the CARDIOVASCULAR SYSTEM. Blood Flow,Circulation, Blood,Blood Flows,Flow, Blood
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D005260 Female Females
D005315 Fetal Diseases Pathophysiological conditions of the FETUS in the UTERUS. Some fetal diseases may be treated with FETAL THERAPIES. Embryopathies,Disease, Fetal,Diseases, Fetal,Embryopathy,Fetal Disease
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D006946 Hyperinsulinism A syndrome with excessively high INSULIN levels in the BLOOD. It may cause HYPOGLYCEMIA. Etiology of hyperinsulinism varies, including hypersecretion of a beta cell tumor (INSULINOMA); autoantibodies against insulin (INSULIN ANTIBODIES); defective insulin receptor (INSULIN RESISTANCE); or overuse of exogenous insulin or HYPOGLYCEMIC AGENTS. Compensatory Hyperinsulinemia,Endogenous Hyperinsulinism,Exogenous Hyperinsulinism,Hyperinsulinemia,Hyperinsulinemia, Compensatory,Hyperinsulinism, Endogenous,Hyperinsulinism, Exogenous
D000319 Adrenergic beta-Antagonists Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety. Adrenergic beta-Antagonist,Adrenergic beta-Receptor Blockader,Adrenergic beta-Receptor Blockaders,beta-Adrenergic Antagonist,beta-Adrenergic Blocker,beta-Adrenergic Blocking Agent,beta-Adrenergic Blocking Agents,beta-Adrenergic Receptor Blockader,beta-Adrenergic Receptor Blockaders,beta-Adrenoceptor Antagonist,beta-Blockers, Adrenergic,beta-Adrenergic Antagonists,beta-Adrenergic Blockers,beta-Adrenoceptor Antagonists,Adrenergic beta Antagonist,Adrenergic beta Antagonists,Adrenergic beta Receptor Blockader,Adrenergic beta Receptor Blockaders,Adrenergic beta-Blockers,Agent, beta-Adrenergic Blocking,Agents, beta-Adrenergic Blocking,Antagonist, beta-Adrenergic,Antagonist, beta-Adrenoceptor,Antagonists, beta-Adrenergic,Antagonists, beta-Adrenoceptor,Blockader, Adrenergic beta-Receptor,Blockader, beta-Adrenergic Receptor,Blockaders, Adrenergic beta-Receptor,Blockaders, beta-Adrenergic Receptor,Blocker, beta-Adrenergic,Blockers, beta-Adrenergic,Blocking Agent, beta-Adrenergic,Blocking Agents, beta-Adrenergic,Receptor Blockader, beta-Adrenergic,Receptor Blockaders, beta-Adrenergic,beta Adrenergic Antagonist,beta Adrenergic Antagonists,beta Adrenergic Blocker,beta Adrenergic Blockers,beta Adrenergic Blocking Agent,beta Adrenergic Blocking Agents,beta Adrenergic Receptor Blockader,beta Adrenergic Receptor Blockaders,beta Adrenoceptor Antagonist,beta Adrenoceptor Antagonists,beta Blockers, Adrenergic,beta-Antagonist, Adrenergic,beta-Antagonists, Adrenergic,beta-Receptor Blockader, Adrenergic,beta-Receptor Blockaders, Adrenergic

Related Publications

B S Stonestreet, and E Le, and D J Berard
January 1996, Journal of the Society for Gynecologic Investigation,
B S Stonestreet, and E Le, and D J Berard
July 1995, Pediatric research,
B S Stonestreet, and E Le, and D J Berard
January 1994, The American journal of physiology,
B S Stonestreet, and E Le, and D J Berard
July 1988, The American journal of physiology,
B S Stonestreet, and E Le, and D J Berard
March 1978, The Journal of the Association of Physicians of India,
B S Stonestreet, and E Le, and D J Berard
February 1967, Journal of applied physiology,
B S Stonestreet, and E Le, and D J Berard
February 1971, The American journal of cardiology,
B S Stonestreet, and E Le, and D J Berard
November 1988, American heart journal,
B S Stonestreet, and E Le, and D J Berard
January 1993, Journal of hepatology,
Copied contents to your clipboard!