The probability of transmitter release at a mammalian central synapse. 1993

N A Hessler, and A M Shirke, and R Malinow
Neuroscience Program, University of Iowa, Iowa City 52242.

When an action potential reaches a synaptic terminal, fusion of a transmitter-containing vesicle with the presynaptic membrane occurs with a probability (pr) of less than one. Despite the fundamental importance of this parameter, pr has not been directly measured in the central nervous system. Here we describe a novel approach to determine pr, monitoring the decrement of NMDA (N-methyl-D-aspartate)-receptor mediated synaptic currents in the presence of the use-dependent channel blocker MK-801 (ref. 2). On a single postsynaptic CA1 hippocampal slice neuron, two classes of synapses with a sixfold difference in pr are resolved. Synapses with low pr contribute to over half of transmission and are more sensitive to drugs enhancing transmitter release. Switching between these two classes of synapses provides the potential for large changes in synaptic efficacy and could underlie forms of activity-dependent plasticity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011336 Probability The study of chance processes or the relative frequency characterizing a chance process. Probabilities
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N A Hessler, and A M Shirke, and R Malinow
May 2001, Nature,
N A Hessler, and A M Shirke, and R Malinow
December 1996, Neuroscience,
N A Hessler, and A M Shirke, and R Malinow
December 1994, Proceedings of the National Academy of Sciences of the United States of America,
N A Hessler, and A M Shirke, and R Malinow
July 1994, Biophysical journal,
N A Hessler, and A M Shirke, and R Malinow
November 1970, The Journal of physiology,
N A Hessler, and A M Shirke, and R Malinow
October 1995, Neuron,
N A Hessler, and A M Shirke, and R Malinow
May 2011, The Journal of physiology,
N A Hessler, and A M Shirke, and R Malinow
December 1971, Nature: New biology,
N A Hessler, and A M Shirke, and R Malinow
August 2000, Nature,
N A Hessler, and A M Shirke, and R Malinow
April 1998, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!