CD4+ type 1 and CD8+ type 2 T cell subsets in human leishmaniasis have distinct T cell receptor repertoires. 1993

K Uyemura, and C Pirmez, and P A Sieling, and K Kiene, and M Paes-Oliveira, and R L Modlin
Division of Dermatology, UCLA School of Medicine 90024.

The mechanism of protective immunity and immunologic resistance against intracellular pathogens is believed to involve the activation of Ag-specific T cells. The T cells involved in protection/resistance to Leishmania can be studied using localized American cutaneous leishmaniasis (LCL) as a model, because the disease is often self-healing. Our study was undertaken to identify specific T cell populations that had accumulated in LCL lesions on the basis of TCR V beta gene usage. RNA was derived from skin lesions and blood of eight LCL patients, as well as from purified CD4+ and CD8+ subsets from the lesions and blood of three patients. After synthesis of cDNA, V beta gene usage was assessed by polymerase chain reaction. In all eight patients, several V beta gene families were overrepresented in lesions compared to blood. More importantly, the TCR V beta repertoires of both lesional CD4+ and CD8+ subsets were skewed compared to the repertoire of the respective subsets in the blood of the same donor. The overrepresented V beta s in the CD4+ and CD8+ subsets from lesions were in most instances disparate, particularly with the V beta 6 TCR skewed in the lesional CD8+ subset. Not only were the TCR repertoires of the overrepresented V beta in the lesional CD4+ and CD8+ subsets generally distinct, but the cytokine mRNA expressed by these subsets were also discrete. Strikingly, the CD4+ subset was characterized by IFN-gamma mRNA expression and the CD8+ subset by IL-4 and IL-10 mRNA expression. These data indicate that the pathogenesis of human leishmaniasis may be explained by the balance of CD4+ type 1 and CD8+ type 2 T cells, which probably recognize distinct sets of Ag.

UI MeSH Term Description Entries
D007891 Leishmania A genus of flagellate protozoa comprising several species that are pathogenic for humans. Organisms of this genus have an amastigote and a promastigote stage in their life cycles. As a result of enzymatic studies this single genus has been divided into two subgenera: Leishmania leishmania and Leishmania viannia. Species within the Leishmania leishmania subgenus include: L. aethiopica, L. arabica, L. donovani, L. enrietti, L. gerbilli, L. hertigi, L. infantum, L. major, L. mexicana, and L. tropica. The following species are those that compose the Leishmania viannia subgenus: L. braziliensis, L. guyanensis, L. lainsoni, L. naiffi, and L. shawi. Leishmania (Leishmania),Leishmania (Viannia),Leishmania leishmania,Leishmania viannia,Leishmania leishmanias,Leishmania viannias,Leishmanias,Leishmanias (Leishmania),Leishmanias (Viannia),leishmanias, Leishmania,viannias, Leishmania
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D015704 CD4 Antigens 55-kDa antigens found on HELPER-INDUCER T-LYMPHOCYTES and on a variety of other immune cell types. They are members of the immunoglobulin supergene family and are implicated as associative recognition elements in MAJOR HISTOCOMPATIBILITY COMPLEX class II-restricted immune responses. On T-lymphocytes they define the helper/inducer subset. T4 antigens also serve as INTERLEUKIN-15 receptors and bind to the HIV receptors, binding directly to the HIV ENVELOPE PROTEIN GP120. Antigens, CD4,CD4 Molecule,CD4 Receptor,CD4 Receptors,Receptors, CD4,T4 Antigens, T-Cell,CD4 Antigen,Receptors, Surface CD4,Surface CD4 Receptor,Antigen, CD4,Antigens, T-Cell T4,CD4 Receptor, Surface,CD4 Receptors, Surface,Receptor, CD4,Surface CD4 Receptors,T-Cell T4 Antigens,T4 Antigens, T Cell
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016176 T-Lymphocyte Subsets A classification of T-lymphocytes, especially into helper/inducer, suppressor/effector, and cytotoxic subsets, based on structurally or functionally different populations of cells. T-Cell Subset,T-Cell Subsets,T-Lymphocyte Subset,Subset, T-Cell,Subset, T-Lymphocyte,Subsets, T-Cell,Subsets, T-Lymphocyte,T Cell Subset,T Cell Subsets,T Lymphocyte Subset,T Lymphocyte Subsets
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine
D016693 Receptors, Antigen, T-Cell, alpha-beta T-cell receptors composed of CD3-associated alpha and beta polypeptide chains and expressed primarily in CD4+ or CD8+ T-cells. Unlike immunoglobulins, the alpha-beta T-cell receptors recognize antigens only when presented in association with major histocompatibility (MHC) molecules. Antigen Receptors, T-Cell, alpha-beta,T-Cell Receptors alpha-Chain,T-Cell Receptors beta-Chain,T-Cell Receptors, alpha-beta,TcR alpha-beta,Antigen T Cell Receptor, alpha Chain,Antigen T Cell Receptor, beta Chain,Receptors, Antigen, T Cell, alpha beta,T Cell Receptors, alpha beta,T-Cell Receptor alpha-Chain,T-Cell Receptor beta-Chain,T-Cell Receptor, alpha-beta,T Cell Receptor alpha Chain,T Cell Receptor beta Chain,T Cell Receptor, alpha beta,T Cell Receptors alpha Chain,T Cell Receptors beta Chain,TcR alpha beta,alpha-Chain, T-Cell Receptor,alpha-Chain, T-Cell Receptors,alpha-beta T-Cell Receptor,alpha-beta T-Cell Receptors,alpha-beta, TcR,beta-Chain, T-Cell Receptor,beta-Chain, T-Cell Receptors

Related Publications

K Uyemura, and C Pirmez, and P A Sieling, and K Kiene, and M Paes-Oliveira, and R L Modlin
February 2003, Immunity,
K Uyemura, and C Pirmez, and P A Sieling, and K Kiene, and M Paes-Oliveira, and R L Modlin
October 1993, Journal of autoimmunity,
K Uyemura, and C Pirmez, and P A Sieling, and K Kiene, and M Paes-Oliveira, and R L Modlin
December 1998, Allergy,
K Uyemura, and C Pirmez, and P A Sieling, and K Kiene, and M Paes-Oliveira, and R L Modlin
August 2012, Microbes and infection,
K Uyemura, and C Pirmez, and P A Sieling, and K Kiene, and M Paes-Oliveira, and R L Modlin
November 1997, Scandinavian journal of immunology,
K Uyemura, and C Pirmez, and P A Sieling, and K Kiene, and M Paes-Oliveira, and R L Modlin
April 2016, Scientific reports,
K Uyemura, and C Pirmez, and P A Sieling, and K Kiene, and M Paes-Oliveira, and R L Modlin
November 1988, Memorias do Instituto Oswaldo Cruz,
K Uyemura, and C Pirmez, and P A Sieling, and K Kiene, and M Paes-Oliveira, and R L Modlin
March 1988, Journal of immunology (Baltimore, Md. : 1950),
K Uyemura, and C Pirmez, and P A Sieling, and K Kiene, and M Paes-Oliveira, and R L Modlin
April 1989, Journal of immunology (Baltimore, Md. : 1950),
K Uyemura, and C Pirmez, and P A Sieling, and K Kiene, and M Paes-Oliveira, and R L Modlin
November 1988, The Journal of experimental medicine,
Copied contents to your clipboard!