Volume-sensitive chloride currents in four epithelial cell lines are not directly correlated to the expression of the MDR-1 gene. 1994

A Rasola, and L J Galietta, and D C Gruenert, and G Romeo
Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, Genova, Italy.

It has been shown recently that heterologous expression of human MDR-1 gene, which is responsible for multidrug resistance during cancer therapy, causes appearance of volume-sensitive Cl- currents, thus suggesting that the product of the MDR-1 gene (the P-glycoprotein) has a Cl- channel activity (Valverde, M. A., Diaz, M., Sepulveda, M. A., Gill, D. R., Hyde, S. C., and Higgins, C. F. (1992) Nature 355, 830-833). In the present work, we have tested four epithelial cell lines both for the expression of MDR-1 gene and for the presence of volume-sensitive Cl- currents. LoVo/H and LoVo/Dx cells derive from a human colon adenocarcinoma, the latter cell line being resistant to high concentrations of the antitumoral drug doxorubicin. 9HTEo- cells were obtained by transformation of human tracheal epithelium. The 9HTEo-/Dx cell line was established from these cells by selection in doxorubicin. As expected, higher levels of P-glycoprotein expression were detected in LoVo/Dx and 9HTEo-/Dx by means of reverse transcriptase polymerase chain reaction technique, indirect immunofluorescence, and Western immunoblot assays. In contrast with these data, the size of swelling-induced Cl- current was the same in the sensitive cell line and in its drug-resistant counterpart. Actually, the Cl- conductance of 9HTEo- and 9HTEo-/Dx was 4-fold higher than that of either LoVo/H or LoVo/Dx cells. This indicates that the amplitude of this conductance is not directly related to the expression of the MDR-1 gene.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

A Rasola, and L J Galietta, and D C Gruenert, and G Romeo
May 1995, The Biochemical journal,
A Rasola, and L J Galietta, and D C Gruenert, and G Romeo
November 1998, British journal of pharmacology,
A Rasola, and L J Galietta, and D C Gruenert, and G Romeo
August 1996, Pflugers Archiv : European journal of physiology,
A Rasola, and L J Galietta, and D C Gruenert, and G Romeo
December 1994, International journal of cancer,
A Rasola, and L J Galietta, and D C Gruenert, and G Romeo
July 2019, International journal of molecular sciences,
A Rasola, and L J Galietta, and D C Gruenert, and G Romeo
January 2020, Frontiers in cell and developmental biology,
A Rasola, and L J Galietta, and D C Gruenert, and G Romeo
February 2002, Sheng li xue bao : [Acta physiologica Sinica],
A Rasola, and L J Galietta, and D C Gruenert, and G Romeo
October 1997, The Journal of physiology,
A Rasola, and L J Galietta, and D C Gruenert, and G Romeo
May 1998, The Journal of general physiology,
A Rasola, and L J Galietta, and D C Gruenert, and G Romeo
February 2012, The Journal of membrane biology,
Copied contents to your clipboard!