Clonal lines of Salmonella enterica serotype Enteritidis documented by IS200-, ribo-, pulsed-field gel electrophoresis and RFLP typing. 1994

J E Olsen, and M N Skov, and E J Threlfall, and D J Brown
Department of Veterinary Microbiology, Royal Veterinary and Agricultural University, Frederiksberg C., Denmark.

Sixty-two selected strains of Salmonella serotype Enteritidis of 33 phage types (PTs), and one strain classified as RDNC, were characterised by four different chromosomally based typing methods to elucidate genetic relationships among strains of different phage types. Based on IS200-hybridisation patterns, two major groups, containing strains of the most commonly encountered phage types, and six minor groups (seven with the RDNC strain included) were observed. IS200 pattern was a stable epidemiological marker in strains of all phage types except PT 6a and 14b. Ribotyping separated strains of the phage types into one major and five minor groups; the pattern of the RDNC strain was not seen with other strains. More than one ribotype was observed among strains of Enteritidis PTs 6, 7, 14b and 21. By pulsed-field gel electrophoresis, strains of 21 of the 33 phage types formed one large cluster when bands > 125 kb were used as the criterion for separation. Among strains belonging to PTs 1, 6, 7 and 14b, more than one pattern was observed by this method. By probing with five random cloned fragments of the Enteritidis chromosome, strains from 27 of 31 phage types examined showed the same hybridisation pattern. With the combined use of four genotypic methods, two groups of strains, representing eight and seven of 33 Enteritidis phage types, were formed; these two groups may be considered as the main evolutionary lines of Enteritidis. Strains of the remaining phage types, and the RDNC strain, belonged to separate groups.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011200 Poultry Domesticated birds raised for food. It typically includes CHICKENS; TURKEYS, DUCKS; GEESE; and others. Fowls, Domestic,Domestic Fowl,Domestic Fowls,Fowl, Domestic,Poultries
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003718 Denmark A country in northern Europe, bordering the Baltic Sea and the North Sea. The capital is Copenhagen. Faeroe Islands,Faroe Islands
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J E Olsen, and M N Skov, and E J Threlfall, and D J Brown
November 1999, Journal of medical microbiology,
J E Olsen, and M N Skov, and E J Threlfall, and D J Brown
June 1998, Epidemiology and infection,
J E Olsen, and M N Skov, and E J Threlfall, and D J Brown
January 2015, Methods in molecular biology (Clifton, N.J.),
J E Olsen, and M N Skov, and E J Threlfall, and D J Brown
June 1999, Journal of clinical microbiology,
J E Olsen, and M N Skov, and E J Threlfall, and D J Brown
January 2007, Foodborne pathogens and disease,
J E Olsen, and M N Skov, and E J Threlfall, and D J Brown
April 2011, Mikrobiyoloji bulteni,
J E Olsen, and M N Skov, and E J Threlfall, and D J Brown
August 2009, International journal of medical microbiology : IJMM,
Copied contents to your clipboard!