Neurotransmitter properties of guinea-pig sympathetic neurons grown in dissociated cell culture--II. Fetal and embryonic neurons: regulation of neuropeptide Y expression. 1993

S G Matsumoto, and R P Gruener, and D L Kreulen
Department of Physiology, University of Arizona College of Medicine, Tucson 85724.

We report here the neurotransmitter characteristics of neurons cultured from the same ganglia of fetal and embryonic guinea-pigs. Both the celiac ganglion and the superior mesenteric ganglion were examined. In a previous paper we described the neurotransmitter properties of adult guinea-pig prevertebral sympathetic neurons grown in dissociated cell culture, including the expression by these cells of immunoreactivity for tyrosine hydroxylase, neuropeptide Y and somatostatin. Tyrosine hydroxylase immunoreactivity was ubiquitously expressed in all fetal embryonic cultures, as was the case for adult neurons. Fetal-derived celiac and superior mesenteric gangli neurons displayed neuropeptide Y and somatostatin immunoreactivity in the same percentage of neurons as in adult cultures but at markedly lower levels. Embryonic neurons also expressed somatostatin immunoreactivity in roughly the same proportion of neurons as in adult and fetal cultures; however, the expression of neuropeptide Y immunoreactivity in both celiac and superior mesenteric gangli cultures was significantly different. Specifically, neuropeptide Y immunoreactivity in embryonic celiac cultures was greatly reduced in both the number of positive-labeled neurons and the amount of immunoreactive product, while neuropeptide Y immunoreactivity in embryonic superior mesenteric gangli cultures was markedly increased compared to their adult and fetal counterparts. The expression of neuropeptide Y immunoreactivity in celiac neurons was found to be specifically elevated by culturing the neurons in medium conditioned by disassociated vascular cells, this treatment having no effect on tyrosine hydroxylase or somatostatin immunoreactivity. Heart cell-conditioned medium did not effect neuropeptide Y or somatostatin immunoreactivity, although it did result in a significant reduction of tyrosine hydroxylase immunoreactivity and an increase in 5-hydroxytryptamine immunoreactivity. We conclude that the expression of neuropeptide Y immunoreactivity develops independently in cultures of adult and near-term fetuses but that embryonic neurons require interactions with target cells to express this phenotype. Neuropeptide Y immunoreactivity can be induced in embryonic sympathetic neurons by a target-derived factor(s).

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017077 Culture Media, Conditioned Culture media containing biologically active components obtained from previously cultured cells or tissues that have released into the media substances affecting certain cell functions (e.g., growth, lysis). Conditioned Culture Media,Conditioned Culture Medium,Conditioned Media,Conditioned Medium,Culture Medium, Conditioned,Media, Conditioned,Medium, Conditioned
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve

Related Publications

S G Matsumoto, and R P Gruener, and D L Kreulen
August 2001, The Journal of comparative neurology,
S G Matsumoto, and R P Gruener, and D L Kreulen
June 1993, Brain research,
S G Matsumoto, and R P Gruener, and D L Kreulen
April 1992, Journal of the autonomic nervous system,
S G Matsumoto, and R P Gruener, and D L Kreulen
August 1985, Developmental biology,
S G Matsumoto, and R P Gruener, and D L Kreulen
October 1984, Investigative ophthalmology & visual science,
S G Matsumoto, and R P Gruener, and D L Kreulen
May 1999, Brain research,
S G Matsumoto, and R P Gruener, and D L Kreulen
May 1997, Neuroscience letters,
Copied contents to your clipboard!