Long-lasting enhancement of NMDA receptor-mediated synaptic transmission by metabotropic glutamate receptor activation. 1994

J J O'Connor, and M J Rowan, and R Anwyl
Department of Pharmacology and Therapeutics, Trinity College, Dublin, Ireland.

Synaptic transmission mediated by the N-methyl-D-aspartate (NMDA) glutamate receptor plays a key role in a range of plastic processes in the nervous system. These include long-term potentiation of synaptic transmission mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor, neuronal development, excitotoxicity and certain learning tasks. Recently, long-term potentiation of NMDA receptor-mediated synaptic transmission was found to occur following high-frequency (tetanic) stimulation via an unknown mechanism. We show here that activation of metabotropic glutamate (mGlu) receptors by neurally released transmitter underlies this type of long-term potentiation. The whole-cell patch-clamp technique in the 'thick' slice of the rat dentate gyrus was used to measure NMDA receptor-mediated excitatory postsynaptic currents. We have found that mGlu receptor activation by a selective agonist produced a long-lasting enhancement which was mutually exclusive with long-term potentiation of these NMDA currents. Moreover, both forms of potentiation were greatly reduced by the mGlu receptor antagonists L-2-amino-3-phosphonopropionate and (R,S)-alpha-methyl-4-carboxyphenylglycine.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D003515 Cycloleucine An amino acid formed by cyclization of leucine. It has cytostatic, immunosuppressive and antineoplastic activities. 1-Aminocyclopentanecarboxylic Acid,Aminocyclopentanecarboxylic Acid,NSC 1026,1 Aminocyclopentanecarboxylic Acid,Acid, 1-Aminocyclopentanecarboxylic,Acid, Aminocyclopentanecarboxylic
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018094 Receptors, Metabotropic Glutamate Cell surface proteins that bind glutamate and act through G-proteins to influence second messenger systems. Several types of metabotropic glutamate receptors have been cloned. They differ in pharmacology, distribution, and mechanisms of action. Glutamate Receptors, Metabotropic,Metabotropic Glutamate Receptors,Receptors, Glutamate, Metabotropic,Metabotropic Glutamate Receptor,Glutamate Receptor, Metabotropic,Receptor, Metabotropic Glutamate
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

J J O'Connor, and M J Rowan, and R Anwyl
October 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J J O'Connor, and M J Rowan, and R Anwyl
November 2000, Journal of neurophysiology,
J J O'Connor, and M J Rowan, and R Anwyl
March 1997, British journal of pharmacology,
J J O'Connor, and M J Rowan, and R Anwyl
January 1993, Brain research bulletin,
J J O'Connor, and M J Rowan, and R Anwyl
August 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J J O'Connor, and M J Rowan, and R Anwyl
February 2008, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J J O'Connor, and M J Rowan, and R Anwyl
July 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J J O'Connor, and M J Rowan, and R Anwyl
September 1997, Neuroreport,
Copied contents to your clipboard!