Valproate increases glutaminase and decreases glutamine synthetase activities in primary cultures of rat brain astrocytes. 1994

R M Collins, and H R Zielke, and R C Woody
Department of Pediatrics, University of Maryland School of Medicine, Baltimore.

It has been proposed that hyperammonemia may be associated with valproate therapy. As astrocytes are the primary site of ammonia detoxification in brain, the effects of valproate on glutamate and glutamine metabolism in astrocytes were studied. It is well established that, because of compartmentation of glutamine synthetase, astrocytes are the site of synthesis of glutamine from glutamate and ammonia. The reverse reaction is catalyzed by the ubiquitous enzyme glutaminase, which is present in both neurons and astrocytes. In astrocytes exposed to 1.2 mM valproate, glutaminase activity increased 80% by day 2 and remained elevated at day 4; glutamine synthetase activity was decreased 30%. Direct addition of valproate to assay tubes with enzyme extracts from untreated astrocytes had significant effects only at concentrations of 10 and 20 mM. When astrocytes were exposed for 4 days to 0.3, 0.6, or 1.2 mM valproate and subsequently incubated with L-[U-14C]glutamate, label incorporation into [14C]glutamine was decreased by 11, 25, and 48%, respectively, and is consistent with a reduction in glutamine synthetase activity. Label incorporation from L-[U-14C]glutamate into [14C]aspartate also decreased with increasing concentrations of valproate. Following a 4-day exposure to 0.6 mM valproate, the glutamine levels increased 40% and the glutamate levels 100%. These effects were not directly proportional to valproate concentration, because exposure to 1.2 mM valproate resulted in a 15% decrease in glutamine levels and a 25% increase in glutamate levels compared with control cultures. Intracellular aspartate was inversely proportional to all concentrations of extracellular valproate, decreasing 60% with exposure to 1.2 mM valproate.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005972 Glutaminase Phosphate-Activated Glutaminase,Glutaminase, Phosphate-Activated,Phosphate Activated Glutaminase
D005974 Glutamate-Ammonia Ligase An enzyme that catalyzes the conversion of ATP, L-glutamate, and NH3 to ADP, orthophosphate, and L-glutamine. It also acts more slowly on 4-methylene-L-glutamate. (From Enzyme Nomenclature, 1992) EC 6.3.1.2. Glutamine Synthetase,Glutamate Ammonia Ligase (ADP),Glutamate Ammonia Ligase,Ligase, Glutamate-Ammonia,Synthetase, Glutamine
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D014635 Valproic Acid A fatty acid with anticonvulsant and anti-manic properties that is used in the treatment of EPILEPSY and BIPOLAR DISORDER. The mechanisms of its therapeutic actions are not well understood. It may act by increasing GAMMA-AMINOBUTYRIC ACID levels in the brain or by altering the properties of VOLTAGE-GATED SODIUM CHANNELS. Dipropyl Acetate,Divalproex,Sodium Valproate,2-Propylpentanoic Acid,Calcium Valproate,Convulsofin,Depakene,Depakine,Depakote,Divalproex Sodium,Ergenyl,Magnesium Valproate,Propylisopropylacetic Acid,Semisodium Valproate,Valproate,Valproate Calcium,Valproate Sodium,Valproic Acid, Sodium Salt (2:1),Vupral,2 Propylpentanoic Acid
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R M Collins, and H R Zielke, and R C Woody
July 1985, Brain research,
R M Collins, and H R Zielke, and R C Woody
June 1990, Neurochemical research,
R M Collins, and H R Zielke, and R C Woody
March 1979, Journal of neurochemistry,
R M Collins, and H R Zielke, and R C Woody
January 1985, Neurochemistry international,
R M Collins, and H R Zielke, and R C Woody
August 1989, Biochemistry international,
R M Collins, and H R Zielke, and R C Woody
July 1979, Journal of neurochemistry,
R M Collins, and H R Zielke, and R C Woody
January 1992, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie,
R M Collins, and H R Zielke, and R C Woody
February 1979, Brain research,
R M Collins, and H R Zielke, and R C Woody
September 1985, Neuropharmacology,
Copied contents to your clipboard!