Co-expression of dopamine transporter mRNA and tyrosine hydroxylase mRNA in ventral mesencephalic neurones. 1993

S J Augood, and K Westmore, and P J McKenna, and P C Emson
Department of Neurobiology, AFRC, Babraham Institute, Cambridge, UK.

Radioactive in situ hybridization was used to map the cellular localization of dopamine (DA) transporter mRNA-containing cells in the adult rat central nervous system. The distribution of DA transporter mRNA-containing cells was compared to adjacent sections processed to visualize tyrosine hydroxylase (TH) mRNA, a marker of catecholamine containing neurones. TH mRNA-containing cells, visualized using an alkaline phosphatase labelled probe, were detected in the hypothalamus, midbrain and pons; the strongest hybridization signals being detected in the substantia nigra, ventral tegmental area and locus coeruleus. The distribution of DA transporter mRNA-containing cells was more restricted; a strong signal being detected in the substantia nigra pars compacta and ventral tegmental area only. No hybridization signal was detected in the locus coeruleus. By simultaneously hybridizing mesencephalic tissue with both the alkaline phosphatase-labelled TH probe and the 35S-labelled DA transporter probe we were able to demonstrate that both DA transporter and TH mRNAs are expressed by the same cells in the substantia nigra and ventral tegmental area. The restricted anatomical localization of DA transporter mRNA-containing cells and the lack of expression in the locus coeruleus and other adrenergic and noradrenergic cell groups confirms the DA transporter as a presynaptic marker of DA containing nerve cells in the rat brain.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014446 Tyrosine 3-Monooxygenase An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2. Tyrosine Hydroxylase,3-Monooxygenase, Tyrosine,Hydroxylase, Tyrosine,Tyrosine 3 Monooxygenase

Related Publications

S J Augood, and K Westmore, and P J McKenna, and P C Emson
November 2008, Cell biology international,
S J Augood, and K Westmore, and P J McKenna, and P C Emson
February 1997, Brain research. Molecular brain research,
S J Augood, and K Westmore, and P J McKenna, and P C Emson
May 1992, Brain research. Molecular brain research,
S J Augood, and K Westmore, and P J McKenna, and P C Emson
February 2018, Behavioral sciences (Basel, Switzerland),
S J Augood, and K Westmore, and P J McKenna, and P C Emson
November 1989, Neuroscience letters,
S J Augood, and K Westmore, and P J McKenna, and P C Emson
July 2016, ACS chemical neuroscience,
S J Augood, and K Westmore, and P J McKenna, and P C Emson
December 1994, Neuroscience letters,
S J Augood, and K Westmore, and P J McKenna, and P C Emson
January 2004, The Journal of comparative neurology,
Copied contents to your clipboard!