Competitive NMDA receptor antagonists enhance the antielectroshock activity of various antiepileptics. 1993

T Pietrasiewicz, and G Czechowska, and M Dziki, and W A Turski, and Z Kleinrok, and S J Czuczwar
Department of Pharmacology and Toxicology, Medical School, Lublin, Poland.

CGP 37849 (1 mg/kg i.p.) enhanced the protective action of carbamazepine, diphenylhydantoin and phenobarbital against maximal electroshock-induced convulsions in mice. At 0.25 mg/kg CGP 37849 was inactive and at 0.5 mg/kg it potentiated the anticonvulsive activity of phenobarbital. CGP 39551 (5 mg/kg i.p.) reduced the ED50 values of diphenylhydantoin and phenobarbital, being without influence on carbamazepine. In the dose of 1.25 mg/kg, CGP 39551 potentiated the antielectroshock action of diphenylhydantoin and at 2.5 mg/kg that of phenobarbital. Neither NMDA receptor antagonist elevated the total plasma levels of antiepileptic drugs. Consequently, a pharmacokinetic interaction (in terms of total plasma levels at least) seems unlikely to be responsible for the observed potentiation of the antiepileptic drugs' activity. Combinations of CGP 37849 with either carbamazepine or phenobarbital resulted in a motor and memory impairment quantified by the chimney test and passive avoidance task, respectively. Moreover, combined treatment with phenobarbital and CGP 39551 caused a memory deficit. In contrast, diphenylhydantoin combined with either CGP 37849 or 39551 was devoid of adverse effects. It may be concluded that NMDA receptor blockade results in enhanced anticonvulsive action of common antiepileptics against maximal electroshock-induced seizures.

UI MeSH Term Description Entries
D008297 Male Males
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D010672 Phenytoin An anticonvulsant that is used to treat a wide variety of seizures. It is also an anti-arrhythmic and a muscle relaxant. The mechanism of therapeutic action is not clear, although several cellular actions have been described including effects on ion channels, active transport, and general membrane stabilization. The mechanism of its muscle relaxant effect appears to involve a reduction in the sensitivity of muscle spindles to stretch. Phenytoin has been proposed for several other therapeutic uses, but its use has been limited by its many adverse effects and interactions with other drugs. Diphenylhydantoin,Fenitoin,Phenhydan,5,5-Diphenylhydantoin,5,5-diphenylimidazolidine-2,4-dione,Antisacer,Difenin,Dihydan,Dilantin,Epamin,Epanutin,Hydantol,Phenytoin Sodium,Sodium Diphenylhydantoinate,Diphenylhydantoinate, Sodium
D002220 Carbamazepine A dibenzazepine that acts as a sodium channel blocker. It is used as an anticonvulsant for the treatment of grand mal and psychomotor or focal SEIZURES. It may also be used in the management of BIPOLAR DISORDER, and has analgesic properties. Amizepine,Carbamazepine Acetate,Carbamazepine Anhydrous,Carbamazepine Dihydrate,Carbamazepine Hydrochloride,Carbamazepine L-Tartrate (4:1),Carbamazepine Phosphate,Carbamazepine Sulfate (2:1),Carbazepin,Epitol,Finlepsin,Neurotol,Tegretol
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004597 Electroshock Induction of a stress reaction in experimental subjects by means of an electrical shock; applies to either convulsive or non-convulsive states. Electroconvulsive Shock,Electroconvulsive Shocks,Electroshocks,Shock, Electroconvulsive,Shocks, Electroconvulsive
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic

Related Publications

T Pietrasiewicz, and G Czechowska, and M Dziki, and W A Turski, and Z Kleinrok, and S J Czuczwar
October 1996, European journal of pharmacology,
T Pietrasiewicz, and G Czechowska, and M Dziki, and W A Turski, and Z Kleinrok, and S J Czuczwar
January 2006, Current topics in medicinal chemistry,
T Pietrasiewicz, and G Czechowska, and M Dziki, and W A Turski, and Z Kleinrok, and S J Czuczwar
September 1996, European journal of pharmacology,
T Pietrasiewicz, and G Czechowska, and M Dziki, and W A Turski, and Z Kleinrok, and S J Czuczwar
January 2000, Journal of investigative surgery : the official journal of the Academy of Surgical Research,
T Pietrasiewicz, and G Czechowska, and M Dziki, and W A Turski, and Z Kleinrok, and S J Czuczwar
August 1988, Science (New York, N.Y.),
T Pietrasiewicz, and G Czechowska, and M Dziki, and W A Turski, and Z Kleinrok, and S J Czuczwar
May 1992, European journal of pharmacology,
T Pietrasiewicz, and G Czechowska, and M Dziki, and W A Turski, and Z Kleinrok, and S J Czuczwar
March 1992, European journal of pharmacology,
T Pietrasiewicz, and G Czechowska, and M Dziki, and W A Turski, and Z Kleinrok, and S J Czuczwar
May 1992, Journal of medicinal chemistry,
T Pietrasiewicz, and G Czechowska, and M Dziki, and W A Turski, and Z Kleinrok, and S J Czuczwar
January 1991, Psychopharmacology,
Copied contents to your clipboard!