Glycoinositol phospholipid anchor-defective K562 mutants with biochemical lesions distinct from those in Thy-1- murine lymphoma mutants. 1994

R P Mohney, and J J Knez, and L Ravi, and D Sevlever, and T L Rosenberry, and S Hirose, and M E Medof
Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106.

Deficient expression of glycoinositol phospholipid (GPI)-anchored surface proteins has been linked to six different genetic defects in Thy-1- murine lymphoma mutants. In this study, human K562 cell mutants defective in GPI anchoring were derived by anti-decay-accelerating factor (CD55) based negative fluorescent cell sorting of N-methyl-N'-nitro-N-nitrosoguanidine pretreated cells. Homologous cell fusions of six clones that complemented a previously described K562 mutant corresponding to one of the Thy-1- mutant classes (Hirose, S., Mohney, R. P., Mutka, S. C., Ravi, L., Singleton, D. R., Perry, G., Tartakoff, A., and Medof, M. E. (1992) J. Biol. Chem. 267, 5272-5278) showed that they segregated into two complementation groups. In heterologous cell fusions, representative clones of each group complemented Thy-1 expression by all of the previously described GPI anchor pathway-defective Thy-1- murine lymphoma classes (A, B, C, E, F, and H) but not class(es) D (and I) defective in the Thy-1 structural gene. Analyses of putative GPI anchor precursors synthesized by the two lines revealed that one mutant exhibited a complete block in deacetylation of N-acetyl-D-glucosamine-inositol phospholipid to glucosamine (GlcN)-inositol phospholipid, whereas the other mutant assembled GlcN-inositol phospholipid and subsequent mannose (Man)-containing intermediates but showed markedly increased amounts of the terminal ethanolamine (EthN)-phosphate (P)-substituted putative anchor precursors, EthN-P-6ManMan(EthN-P-->)ManGlcN- and EthN-P-6Man(EthN-P-6)Man(EthN- P-->)ManGlcN-acylinositol phospholipid (H7 and H8). We designate these new complementation classes J, harboring a defect in N-acetyl-D-glucosamine-inositol phospholipid deacetylation, and K, deficient in a step preliminary to or associated with protein transfer of assembled anchor precursors. The availability of these new mutant classes should aid in characterization of the GPI anchor pathway enzymes providing for these reactions.

UI MeSH Term Description Entries
D008223 Lymphoma A general term for various neoplastic diseases of the lymphoid tissue. Germinoblastoma,Lymphoma, Malignant,Reticulolymphosarcoma,Sarcoma, Germinoblastic,Germinoblastic Sarcoma,Germinoblastic Sarcomas,Germinoblastomas,Lymphomas,Lymphomas, Malignant,Malignant Lymphoma,Malignant Lymphomas,Reticulolymphosarcomas,Sarcomas, Germinoblastic
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008769 Methylnitronitrosoguanidine A nitrosoguanidine derivative with potent mutagenic and carcinogenic properties. Methylnitrosonitroguanidine,Nitrosomethylnitroguanidine,Nitrosonitromethylguanidine,MNNG,N-Methyl-N'-nitro-N-nitrosoguanidine,N Methyl N' nitro N nitrosoguanidine
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

R P Mohney, and J J Knez, and L Ravi, and D Sevlever, and T L Rosenberry, and S Hirose, and M E Medof
March 1992, The Journal of biological chemistry,
R P Mohney, and J J Knez, and L Ravi, and D Sevlever, and T L Rosenberry, and S Hirose, and M E Medof
June 1991, The Journal of biological chemistry,
R P Mohney, and J J Knez, and L Ravi, and D Sevlever, and T L Rosenberry, and S Hirose, and M E Medof
August 1991, Molecular and cellular biology,
R P Mohney, and J J Knez, and L Ravi, and D Sevlever, and T L Rosenberry, and S Hirose, and M E Medof
August 1992, The Journal of biological chemistry,
R P Mohney, and J J Knez, and L Ravi, and D Sevlever, and T L Rosenberry, and S Hirose, and M E Medof
July 1991, The Journal of biological chemistry,
R P Mohney, and J J Knez, and L Ravi, and D Sevlever, and T L Rosenberry, and S Hirose, and M E Medof
August 1993, Glycobiology,
R P Mohney, and J J Knez, and L Ravi, and D Sevlever, and T L Rosenberry, and S Hirose, and M E Medof
March 1992, Biochemistry,
R P Mohney, and J J Knez, and L Ravi, and D Sevlever, and T L Rosenberry, and S Hirose, and M E Medof
January 1987, Immunogenetics,
R P Mohney, and J J Knez, and L Ravi, and D Sevlever, and T L Rosenberry, and S Hirose, and M E Medof
January 1977, Somatic cell genetics,
R P Mohney, and J J Knez, and L Ravi, and D Sevlever, and T L Rosenberry, and S Hirose, and M E Medof
January 2014, Plant signaling & behavior,
Copied contents to your clipboard!