Target site of inhibition mediated by midbrain periaqueductal gray matter of baroreflex vagal bradycardia. 1993

K Inui, and S Nosaka
Department of Psychiatry, Mie University School of Medicine, Japan.

1. Both electrical and chemical stimulation of the midbrain periaqueductal gray matter (PAG) inhibit baroreflex vagal bradycardia (BVB). The present study was designed to determine the target site of this inhibition about which little is known. Electrical stimulation of the PAG, in particular of its dorsal portion, markedly suppressed BVB provoked by electrical stimulation of the aortic depressor nerve (ADN; percentage of inhibition = 91.0 +/- 9.7%, mean +/- SD; n = 64). To identify the target site of the inhibition, several types of experiments were conducted in rats under chloralose-urethan anesthesia. 2. The inhibition was exclusively of central origin because inhibition of BVB by stimulation of the PAG was unchanged after transection of the spinal cord at the C1 level. According to Wall's method, we examined whether PAG stimulation affects BVB presynaptically by modulating the excitability of ADN terminals in the nucleus tractus solitarius (NTS). However, excitability changes of ADN terminals by the PAG stimulation were not demonstrated. 3. Vagal bradycardia evoked by microinjection of glutamate into the nucleus ambiguus (NA) region was markedly suppressed by the PAG (percentage of inhibition = 85.9 +/- 9.1%; n = 9), an indication that vagal cardiac preganglionic neurons at this site were subject to the inhibitory action of the PAG. Basal vagal tone due to ongoing preganglionic neuronal activity was also subject to inhibitory control by the PAG because basal heart rate was increased by stimulation of the PAG after either C1 transection or NTS lesion. 4. We found that PAG stimulation suppressed ADN-induced field potentials in the NA region (37.7 +/- 13.8% relative to the control; n = 9) but only slightly in the NTS region (95.8 +/- 15.2%; n = 16). In addition, unitary recordings revealed that ADN-evoked unitary responses of neurons in the NA region were suppressed by PAG stimulation, whereas NTS baroreceptor neurons, either ADN responsive or nonresponsive, were scarcely inhibited by PAG stimulation. 5. These findings suggest that the PAG inhibited BVB mainly at the vagal preganglionic cell level and not at the NTS interneuron level. The conclusion is in harmony with our previous reports that the target site of hypothalamic inhibition of BVB in rats is also the preganglionic neurons and that hypothalamic inhibition of BVB is mediated predominantly by the PAG.

UI MeSH Term Description Entries
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010487 Periaqueductal Gray Central gray matter surrounding the CEREBRAL AQUEDUCT in the MESENCEPHALON. Physiologically it is probably involved in RAGE reactions, the LORDOSIS REFLEX; FEEDING responses, bladder tonus, and pain. Mesencephalic Central Gray,Midbrain Central Gray,Central Gray Substance of Midbrain,Central Periaqueductal Gray,Griseum Centrale,Griseum Centrale Mesencephali,Periaqueductal Gray Matter,Substantia Grisea Centralis,Substantia Grisea Centralis Mesencephali,Central Gray, Mesencephalic,Central Gray, Midbrain,Gray Matter, Periaqueductal,Gray, Central Periaqueductal,Griseum Centrale Mesencephalus,Periaqueductal Grays, Central
D011311 Pressoreceptors Receptors in the vascular system, particularly the aorta and carotid sinus, which are sensitive to stretch of the vessel walls. Baroreceptors,Receptors, Stretch, Arterial,Receptors, Stretch, Vascular,Stretch Receptors, Arterial,Stretch Receptors, Vascular,Arterial Stretch Receptor,Arterial Stretch Receptors,Baroreceptor,Pressoreceptor,Receptor, Arterial Stretch,Receptor, Vascular Stretch,Receptors, Arterial Stretch,Receptors, Vascular Stretch,Stretch Receptor, Arterial,Stretch Receptor, Vascular,Vascular Stretch Receptor,Vascular Stretch Receptors
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.

Related Publications

K Inui, and S Nosaka
January 1980, Doklady Akademii nauk SSSR,
K Inui, and S Nosaka
January 1999, The American journal of physiology,
K Inui, and S Nosaka
October 1989, The American journal of physiology,
K Inui, and S Nosaka
June 1984, Biulleten' eksperimental'noi biologii i meditsiny,
K Inui, and S Nosaka
September 2000, American journal of physiology. Heart and circulatory physiology,
Copied contents to your clipboard!