Effects of sympathetic nerve stimulation on the sino-atrial node of the guinea-pig. 1993

J K Choate, and F R Edwards, and G D Hirst, and J E O'Shea
Department of Zoology, University of Melbourne, Parkville, Victoria, Australia.

1. The effects of sympathetic nerve stimulation on the generation of pacemaker action potentials, recorded from the sino-atrial node of the guinea-pig, were determined by using intracellular recording techniques. 2. Trains of stimuli applied to the right stellate ganglion led to an increase in heart rate after a delay of a few seconds. During the initial phase of the tachycardia the rate of discharge of pacemaker action potentials increased and the rate of diastolic depolarization increased, but both the peak diastolic potential and the maximum rate of rise of the action potentials were reduced. During the later phase of the tachycardia the peak diastolic potential, the amplitude of the action potentials, the maximum rate of rise and the rate of repolarization of the action potentials were increased. 3. When membrane potential recordings were made from sino-atrial node cells, in which beating had been abolished by adding the organic calcium antagonist nifedipine, sympathetic nerve stimulation initiated excitatory junction potentials (EJPs) which had time courses similar to those of the tachycardias recorded from beating preparations. 4. Although both the tachycardias produced by either sympathetic nerve stimulation or added noradrenaline were largely abolished by beta-adrenoceptor antagonists, the membrane potential changes recorded during the responses to sympathetic nerve stimulation or added noradrenaline were different. Bath-applied noradrenaline caused a tachycardia which was associated with an increase in the amplitudes of pacemaker action potentials, an increase in the peak diastolic potential and a shortening in the duration of pacemaker action potentials. 5. The addition of agents which cause the accumulation of cyclic AMP in the cytoplasm of the cells produced a tachycardia which was associated with a similar sequence of changes in the membrane potentials to those produced by added noradrenaline; again the membrane potential changes produced by these agents differed from those produced by sympathetic nerve stimulation. 6. The results are discussed in relation to the idea that neurally released noradrenaline activates a set of receptors which cause tachycardia by increasing inward current flow during diastole, whereas added noradrenaline activates a set of receptors that are linked to a cyclic AMP-dependent pathway which modifies the properties of some of the voltage-dependent channels involved in pacemaking activity.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000319 Adrenergic beta-Antagonists Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety. Adrenergic beta-Antagonist,Adrenergic beta-Receptor Blockader,Adrenergic beta-Receptor Blockaders,beta-Adrenergic Antagonist,beta-Adrenergic Blocker,beta-Adrenergic Blocking Agent,beta-Adrenergic Blocking Agents,beta-Adrenergic Receptor Blockader,beta-Adrenergic Receptor Blockaders,beta-Adrenoceptor Antagonist,beta-Blockers, Adrenergic,beta-Adrenergic Antagonists,beta-Adrenergic Blockers,beta-Adrenoceptor Antagonists,Adrenergic beta Antagonist,Adrenergic beta Antagonists,Adrenergic beta Receptor Blockader,Adrenergic beta Receptor Blockaders,Adrenergic beta-Blockers,Agent, beta-Adrenergic Blocking,Agents, beta-Adrenergic Blocking,Antagonist, beta-Adrenergic,Antagonist, beta-Adrenoceptor,Antagonists, beta-Adrenergic,Antagonists, beta-Adrenoceptor,Blockader, Adrenergic beta-Receptor,Blockader, beta-Adrenergic Receptor,Blockaders, Adrenergic beta-Receptor,Blockaders, beta-Adrenergic Receptor,Blocker, beta-Adrenergic,Blockers, beta-Adrenergic,Blocking Agent, beta-Adrenergic,Blocking Agents, beta-Adrenergic,Receptor Blockader, beta-Adrenergic,Receptor Blockaders, beta-Adrenergic,beta Adrenergic Antagonist,beta Adrenergic Antagonists,beta Adrenergic Blocker,beta Adrenergic Blockers,beta Adrenergic Blocking Agent,beta Adrenergic Blocking Agents,beta Adrenergic Receptor Blockader,beta Adrenergic Receptor Blockaders,beta Adrenoceptor Antagonist,beta Adrenoceptor Antagonists,beta Blockers, Adrenergic,beta-Antagonist, Adrenergic,beta-Antagonists, Adrenergic,beta-Receptor Blockader, Adrenergic,beta-Receptor Blockaders, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J K Choate, and F R Edwards, and G D Hirst, and J E O'Shea
July 1993, Journal of the autonomic nervous system,
J K Choate, and F R Edwards, and G D Hirst, and J E O'Shea
August 1971, Japanese journal of pharmacology,
J K Choate, and F R Edwards, and G D Hirst, and J E O'Shea
January 1986, The Japanese journal of physiology,
J K Choate, and F R Edwards, and G D Hirst, and J E O'Shea
June 1969, Pflugers Archiv : European journal of physiology,
J K Choate, and F R Edwards, and G D Hirst, and J E O'Shea
February 1968, Archives internationales de physiologie et de biochimie,
J K Choate, and F R Edwards, and G D Hirst, and J E O'Shea
January 2001, Experimental physiology,
J K Choate, and F R Edwards, and G D Hirst, and J E O'Shea
June 1968, The Journal of physiology,
J K Choate, and F R Edwards, and G D Hirst, and J E O'Shea
February 1997, Pflugers Archiv : European journal of physiology,
J K Choate, and F R Edwards, and G D Hirst, and J E O'Shea
November 2000, Cardiovascular research,
J K Choate, and F R Edwards, and G D Hirst, and J E O'Shea
January 1972, Verhandlungen der Deutschen Gesellschaft fur Innere Medizin,
Copied contents to your clipboard!