Characterization of transcription initiation, translation initiation, and poly(A) addition sites in the gene-sized macronuclear DNA molecules of Euplotes. 1994

S Ghosh, and J W Jaraczewski, and L A Klobutcher, and C L Jahn
Department of Biochemistry, University of Connecticut Health Center, Farmington 06030.

The DNA in the transcriptionally active macronucleus of the hypotrichous ciliate Euplotes crassus exists as short, linear molecules with each molecule encoding a single genetic function. Previous work has indicated that coding regions occupy the majority of macronuclear DNA molecules. In the present study we have defined the transcription initiation sites and poly(A) addition sites for a number of different macronuclear genes in Euplotes crassus. Our results indicate that mature transcripts represent all but approximately 100-200 bases of the non-telomeric sequences in macronuclear DNA molecules. We have also examined the sequences in the vicinity of transcription start sites, poly(A) addition sites, and translation initiation sites for Euplotes species genes in an attempt to define the cis-acting elements that control these processes. Our results indicate that some of the common sequence elements known to control these processes in higher eukaryotes are likely not utilized by Euplotes genes. The data do indicate the presence of other conserved sequences both preceding and at the site of poly(A) addition, as well as at the site of translation initiation. These conserved sequences may serve an analogous role in these organisms. Finally, we have found that most macronuclear DNA molecules have transcription initiation sites within 30 bp of the telomere, suggesting that the telomere may play a role in promoting transcription.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010442 Peptide Chain Initiation, Translational A process of GENETIC TRANSLATION whereby the formation of a peptide chain is started. It includes assembly of the RIBOSOME components, the MESSENGER RNA coding for the polypeptide to be made, INITIATOR TRNA, and PEPTIDE INITIATION FACTORS; and placement of the first amino acid in the peptide chain. The details and components of this process are unique for prokaryotic protein biosynthesis and eukaryotic protein biosynthesis. Chain Initiation, Peptide, Translational,Protein Biosynthesis Initiation,Protein Chain Initiation, Translational,Protein Translation Initiation,Translation Initiation, Genetic,Translation Initiation, Protein,Translational Initiation, Protein,Translational Peptide Chain Initiation,Biosynthesis Initiation, Protein,Genetic Translation Initiation,Initiation, Genetic Translation,Initiation, Protein Biosynthesis,Initiation, Protein Translation,Initiation, Protein Translational,Protein Translational Initiation
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D016053 RNA, Protozoan Ribonucleic acid in protozoa having regulatory and catalytic roles as well as involvement in protein synthesis. Protozoan RNA
D016054 DNA, Protozoan Deoxyribonucleic acid that makes up the genetic material of protozoa. Protozoan DNA

Related Publications

S Ghosh, and J W Jaraczewski, and L A Klobutcher, and C L Jahn
April 1995, Nucleic acids research,
S Ghosh, and J W Jaraczewski, and L A Klobutcher, and C L Jahn
December 1985, Experimental cell research,
S Ghosh, and J W Jaraczewski, and L A Klobutcher, and C L Jahn
November 1986, Molecular and cellular biology,
S Ghosh, and J W Jaraczewski, and L A Klobutcher, and C L Jahn
July 1991, Chromosoma,
S Ghosh, and J W Jaraczewski, and L A Klobutcher, and C L Jahn
January 1999, The Journal of eukaryotic microbiology,
S Ghosh, and J W Jaraczewski, and L A Klobutcher, and C L Jahn
August 1985, Nucleic acids research,
S Ghosh, and J W Jaraczewski, and L A Klobutcher, and C L Jahn
May 1987, The Journal of cell biology,
S Ghosh, and J W Jaraczewski, and L A Klobutcher, and C L Jahn
January 1995, The Journal of eukaryotic microbiology,
Copied contents to your clipboard!