Steroid hormone effects on NMDA receptor binding and NMDA receptor mRNA levels in the hypothalamus and cerebral cortex of the adult rat. 1993

D W Brann, and P L Zamorano, and L P Chorich, and V B Mahesh
Department of Physiology and Endocrinology, Medical College of Georgia, Augusta 30912-3000.

Previous work has demonstrated that N-methyl-D-aspartate (NMDA) is capable of stimulating luteinizing hormone release in a variety of species. Interestingly, the ability of NMDA to stimulate luteinizing hormone release is significantly compromised in castrated male and female rats as compared to intact animals. The purpose of the present study was to determine if a difference exists in the number or affinity of NMDA receptors in the hypothalamus of intact or castrated adult male and female rats and whether steroid replacement has any effect on NMDA receptor binding. NMDA receptor mRNA levels were also determined in the respective models. The cerebral cortex was used as a control to check for specificity of any observed differences. The number of NMDA binding sites in the hypothalamus was found to be approximately 25% of that found in the cerebral cortex and the equilibrium association constant was similar in both tissues. In the female rat, neither ovariectomy nor ovariectomy with estrogen pellet replacement or estrogen and progesterone injections altered NMDA receptor binding or the equilibrium association constant in the hypothalamus or cerebral cortex as compared to intact controls. Similar to the case in the female, NMDA receptor binding in the hypothalamus and cerebral cortex of male rats did not change after castration or after treatment with testosterone propionate. Neither ovariectomy nor ovariectomy with estradiol replacement brought about any change in the NMDA receptor mRNA levels in the hypothalamus. However, in the cerebral cortex ovariectomy with estrogen replacement brought about a small but significant increase in NMDA receptor mRNA levels.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D009919 Orchiectomy The surgical removal of one or both testicles. Castration, Male,Orchidectomy,Castrations, Male,Male Castration,Male Castrations,Orchidectomies,Orchiectomies
D010052 Ovariectomy The surgical removal of one or both ovaries. Castration, Female,Oophorectomy,Bilateral Ovariectomy,Bilateral Ovariectomies,Castrations, Female,Female Castration,Female Castrations,Oophorectomies,Ovariectomies,Ovariectomies, Bilateral,Ovariectomy, Bilateral
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004343 Drug Implants Small containers or pellets of a solid drug implanted in the body to achieve sustained release of the drug. Drug Implant,Drug Pellet,Pellets, Drug,Drug Pellets,Implant, Drug,Implants, Drug,Pellet, Drug
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D W Brann, and P L Zamorano, and L P Chorich, and V B Mahesh
July 1993, Brain research. Molecular brain research,
D W Brann, and P L Zamorano, and L P Chorich, and V B Mahesh
March 1999, European journal of pharmacology,
D W Brann, and P L Zamorano, and L P Chorich, and V B Mahesh
May 1986, Biulleten' eksperimental'noi biologii i meditsiny,
D W Brann, and P L Zamorano, and L P Chorich, and V B Mahesh
November 2023, ACS chemical neuroscience,
D W Brann, and P L Zamorano, and L P Chorich, and V B Mahesh
February 1993, Journal of neurochemistry,
D W Brann, and P L Zamorano, and L P Chorich, and V B Mahesh
January 1999, Brain research. Molecular brain research,
D W Brann, and P L Zamorano, and L P Chorich, and V B Mahesh
May 2008, Neurochemical research,
D W Brann, and P L Zamorano, and L P Chorich, and V B Mahesh
June 1988, The Journal of biological chemistry,
D W Brann, and P L Zamorano, and L P Chorich, and V B Mahesh
February 1999, Brain research,
Copied contents to your clipboard!