Neurotransmitter replacement therapy in Alzheimer's disease. 1994

E Mohr, and T Mendis, and I N Rusk, and J D Grimes
Institute of Mental Health Research, University of Ottawa, Ontario, Canada.

The relative success of symptomatic attenuation of motor dysfunction in Parkinson's disease with dopaminomimetics has spurred interest in neurotransmitter replacement therapy for treating Alzheimer's disease. While cholinergic dysfunction has been linked to various clinical parameters in Alzheimer's disease, cholinergic replacement, including precursor therapy, administration of direct-acting agonists and inhibition of enzymatic degradation has had only very modest success. The inhibition of enzymatic degradation has perhaps shown the most interesting results to date. However, conclusions with respect to efficacy continue to be controversial. Discussion continues about whether or not single transmitter replacement for Alzheimer's disease is a viable treatment approach. Deficiencies in central noradrenergic, serotonergic, GABAergic and perhaps dopaminergic neural transmission may also play a critical role in some of the clinical manifestations of Alzheimer's disease. In addition, certain neuropeptides, in particular somatostatin, may be important in this context. Several series of clinical trials are currently attempting to address these issues. Given the complexities of the pathophysiology of Alzheimer's disease, symptomatic relief may require multiple transmitter replacement and necessitate more definitive intercessions at the molecular biological level.

UI MeSH Term Description Entries
D008297 Male Males
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005260 Female Females
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D000544 Alzheimer Disease A degenerative disease of the BRAIN characterized by the insidious onset of DEMENTIA. Impairment of MEMORY, judgment, attention span, and problem solving skills are followed by severe APRAXIAS and a global loss of cognitive abilities. The condition primarily occurs after age 60, and is marked pathologically by severe cortical atrophy and the triad of SENILE PLAQUES; NEUROFIBRILLARY TANGLES; and NEUROPIL THREADS. (From Adams et al., Principles of Neurology, 6th ed, pp1049-57) Acute Confusional Senile Dementia,Alzheimer's Diseases,Dementia, Alzheimer Type,Dementia, Senile,Presenile Alzheimer Dementia,Senile Dementia, Alzheimer Type,Alzheimer Dementia,Alzheimer Disease, Early Onset,Alzheimer Disease, Late Onset,Alzheimer Sclerosis,Alzheimer Syndrome,Alzheimer Type Senile Dementia,Alzheimer's Disease,Alzheimer's Disease, Focal Onset,Alzheimer-Type Dementia (ATD),Dementia, Presenile,Dementia, Primary Senile Degenerative,Early Onset Alzheimer Disease,Familial Alzheimer Disease (FAD),Focal Onset Alzheimer's Disease,Late Onset Alzheimer Disease,Primary Senile Degenerative Dementia,Senile Dementia, Acute Confusional,Alzheimer Dementias,Alzheimer Disease, Familial (FAD),Alzheimer Diseases,Alzheimer Type Dementia,Alzheimer Type Dementia (ATD),Alzheimers Diseases,Dementia, Alzheimer,Dementia, Alzheimer-Type (ATD),Familial Alzheimer Diseases (FAD),Presenile Dementia,Sclerosis, Alzheimer,Senile Dementia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone
D015259 Dopamine Agents Any drugs that are used for their effects on dopamine receptors, on the life cycle of dopamine, or on the survival of dopaminergic neurons. Dopamine Drugs,Dopamine Effect,Dopamine Effects,Dopaminergic Agents,Dopaminergic Drugs,Dopaminergic Effect,Dopaminergic Effects,Agents, Dopamine,Agents, Dopaminergic,Drugs, Dopamine,Drugs, Dopaminergic,Effect, Dopamine,Effect, Dopaminergic,Effects, Dopamine,Effects, Dopaminergic

Related Publications

E Mohr, and T Mendis, and I N Rusk, and J D Grimes
January 1984, Revue neurologique,
E Mohr, and T Mendis, and I N Rusk, and J D Grimes
December 1990, Journal of neuroscience research,
E Mohr, and T Mendis, and I N Rusk, and J D Grimes
July 1988, Nihon rinsho. Japanese journal of clinical medicine,
E Mohr, and T Mendis, and I N Rusk, and J D Grimes
November 1998, Drugs of today (Barcelona, Spain : 1998),
E Mohr, and T Mendis, and I N Rusk, and J D Grimes
March 1999, Maturitas,
E Mohr, and T Mendis, and I N Rusk, and J D Grimes
May 1996, British journal of obstetrics and gynaecology,
E Mohr, and T Mendis, and I N Rusk, and J D Grimes
January 2020, Neuroscience bulletin,
E Mohr, and T Mendis, and I N Rusk, and J D Grimes
September 1990, The British journal of psychiatry : the journal of mental science,
E Mohr, and T Mendis, and I N Rusk, and J D Grimes
January 1987, Journal of neural transmission. Supplementum,
E Mohr, and T Mendis, and I N Rusk, and J D Grimes
January 1986, Progress in neuro-psychopharmacology & biological psychiatry,
Copied contents to your clipboard!