The exocytotic fusion pore and neurotransmitter release. 1994

J R Monck, and J M Fernandez
Department of Physiology and Biophysics, Mayo Clinic, Rochester, Minnesota 55905.

Membrane fusion is ubiquitous in biological systems, occurring in the simplest of unicellular eukaryotes as well as higher eukaryotes. As soon as the first primitive eukaryotic cell utilized a lipid bilayer as an outer membrane, membrane fusion (and fission) became necessary for the traffic of material from the outside to the inside, the inside to the outside, and between different intracellular membrane-bounded compartments. The earliest cells would have made use of the intrinsic ability of lipid bilayers to fuse under certain conditions. Although this fusogenic property of bilayers has been known for some time, it is has become clear only relatively recently that two phospholipid bilayers will fuse spontaneously, owing to a hydrophobic force, when the bilayers are brought close together under conditions of membrane tension or high curvature (Helm and Israelachvili, 1993). The primeval cell would have used proteins to develop the appropriate architecture in which such fusion would occur in a regulated manner. During the course of evolution, ever more sophisticated ways of regulating this basic process would evolve, but the underlying fusion mechanism would remain unchanged. We have proposed that a macromolecular scaffold of proteins is responsible for bringing the plasma membrane close to the secretory granule membranes and creating the architecture that enables the hydrophobic force to cause fusion (Figure 1; Nanavati et al., 1992; Monck and Fernandez, 1992; Oberhauser and Fernandez, 1993). Evidence is now accumulating that there are several highly conserved families of proteins associated with vesicle fusion events, from yeast to mammalian cells, and with intracellular traffic, as well as with regulated exocytosis and synaptic transmission (Bennett and Scheller, 1993; Sollner et al., 1993; Südhof et al., 1993). The molecular structures (or scaffolds) that regulate membrane fusion are likely to contain related proteins and share certain fundamental properties.

UI MeSH Term Description Entries
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve

Related Publications

J R Monck, and J M Fernandez
January 1996, Society of General Physiologists series,
J R Monck, and J M Fernandez
August 2020, Cell stress,
J R Monck, and J M Fernandez
November 2018, FEBS letters,
J R Monck, and J M Fernandez
October 1992, Biophysical journal,
J R Monck, and J M Fernandez
January 2022, Cell calcium,
J R Monck, and J M Fernandez
May 1997, Trends in neurosciences,
J R Monck, and J M Fernandez
November 2018, FEBS letters,
J R Monck, and J M Fernandez
May 2017, Nature neuroscience,
J R Monck, and J M Fernandez
August 2011, Proceedings of the National Academy of Sciences of the United States of America,
J R Monck, and J M Fernandez
January 2012, Communicative & integrative biology,
Copied contents to your clipboard!