Specific DNA recognition and intersite spacing are critical for action of the bicoid morphogen. 1994

S D Hanes, and G Riddihough, and D Ish-Horowicz, and R Brent
Department of Molecular Biology, Massachusetts General Hospital, Boston.

We examined DNA site recognition by Bicoid and its importance for pattern formation in developing Drosophila embryos. Using altered DNA specificity Bicoid mutants and appropriate reporter genes, we show that Bicoid distinguishes among related DNA-binding sites in vivo by a specific contact between amino acid 9 of its recognition alpha-helix (lysine 50 of the homeodomain) and bp 7 of the site. This result is consistent with our earlier results using Saccharomyces cerevisiae but differs from that predicted by crystallographic analysis of another homeodomain-DNA interaction. Our results also demonstrate that Bicoid binds directly to those genes whose transcription it regulates and that the amino acid 9 contact is necessary for Bicoid to direct anterior pattern formation. In both Drosophila embryos and yeast cells, Bicoid requires multiple binding sites to activate transcription of target genes. We find that the distance between binding sites is critical for Bicoid activation but that, unexpectedly, this critical distance differs between Drosophila and S. cerevisiae. This result suggests that Bicoid activation in Drosophila might require an ancillary protein(s) not present in S. cerevisiae.

UI MeSH Term Description Entries
D007301 Insect Hormones Hormones secreted by insects. They influence their growth and development. Also synthetic substances that act like insect hormones. Insect Hormone,Hormone, Insect,Hormones, Insect
D008297 Male Males
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic

Related Publications

S D Hanes, and G Riddihough, and D Ish-Horowicz, and R Brent
June 2017, Biochemistry,
S D Hanes, and G Riddihough, and D Ish-Horowicz, and R Brent
March 2010, Current biology : CB,
S D Hanes, and G Riddihough, and D Ish-Horowicz, and R Brent
January 2011, Fly,
S D Hanes, and G Riddihough, and D Ish-Horowicz, and R Brent
February 2009, Proceedings of the National Academy of Sciences of the United States of America,
S D Hanes, and G Riddihough, and D Ish-Horowicz, and R Brent
July 2007, Cell,
S D Hanes, and G Riddihough, and D Ish-Horowicz, and R Brent
January 2004, Cell,
S D Hanes, and G Riddihough, and D Ish-Horowicz, and R Brent
January 2004, Cell,
S D Hanes, and G Riddihough, and D Ish-Horowicz, and R Brent
July 2007, Cell,
S D Hanes, and G Riddihough, and D Ish-Horowicz, and R Brent
January 2008, Cell,
S D Hanes, and G Riddihough, and D Ish-Horowicz, and R Brent
March 2011, Cellular and molecular bioengineering,
Copied contents to your clipboard!