Effect of aspartate and glutamate on the oxoglutarate carrier investigated in rat heart mitochondria and inverted submitochondrial vesicles. 1994

J J Hautecler, and C M Sluse-Goffart, and A Evens, and C Duyckaerts, and F E Sluse
Laboratoire de Bioénergétique, Université de Liège, Belgium.

Interaction of glutamate and aspartate with the oxoglutarate carrier was investigated in rat heart mitochondria or inverted submitochondrial particles. With mitochondria, glutamate and aspartate had no effect on the initial rate of oxoglutarate or malate uptake. With inverted submitochondrial vesicles, binding experiments indicated that aspartate bound to the oxoglutarate carrier on its matricial face and increased the affinity of the substrate binding site for malate but did not change the affinity for oxoglutarate. Glutamate had no effect on both substrate bindings. The dissociation constants of the binary substrate-carrier complexes on the matricial side were determined (1.28 +/- 0.15 mM for oxoglutarate and 2.22 +/- 0.26 mM for malate). These values, compared with those obtained previously on the cytosolic side of intact mitochondria, confirmed the asymmetry of the carrier in the native membrane (higher affinities on the cytosolic face). It is concluded that (1) aspartate and glutamate are not cytosolic effectors of the oxoglutarate carrier, (2) matricial aspartate is a positive effector of the binding of malate on the matricial side of the oxoglutarate carrier, and (3) such a characteristic may play a role in the regulation of the oxoglutarate carrier. Thus, it may be emphasized that (1) this observation is the first clear evidence of a well-defined 'sophisticated regulation' (allosteric) of a mitochondrial metabolite carrier, and (2) this regulation of the oxoglutarate carrier may have important consequences on the efficiency of reducing equivalent import in the matrix space by the malate-aspartate shuttle.

UI MeSH Term Description Entries
D007656 Ketoglutaric Acids A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442) Oxoglutarates,2-Ketoglutarate,2-Ketoglutaric Acid,2-Oxoglutarate,2-Oxoglutaric Acid,Calcium Ketoglutarate,Calcium alpha-Ketoglutarate,Ketoglutaric Acid,Oxogluric Acid,alpha-Ketoglutarate,alpha-Ketoglutaric Acid,alpha-Ketoglutaric Acid, Calcium Salt (2:1),alpha-Ketoglutaric Acid, Diammonium Salt,alpha-Ketoglutaric Acid, Dipotassium Salt,alpha-Ketoglutaric Acid, Disodium Salt,alpha-Ketoglutaric Acid, Monopotassium Salt,alpha-Ketoglutaric Acid, Monosodium Salt,alpha-Ketoglutaric Acid, Potassium Salt,alpha-Ketoglutaric Acid, Sodium Salt,alpha-Oxoglutarate,2 Ketoglutarate,2 Ketoglutaric Acid,2 Oxoglutarate,2 Oxoglutaric Acid,Calcium alpha Ketoglutarate,alpha Ketoglutarate,alpha Ketoglutaric Acid,alpha Ketoglutaric Acid, Diammonium Salt,alpha Ketoglutaric Acid, Dipotassium Salt,alpha Ketoglutaric Acid, Disodium Salt,alpha Ketoglutaric Acid, Monopotassium Salt,alpha Ketoglutaric Acid, Monosodium Salt,alpha Ketoglutaric Acid, Potassium Salt,alpha Ketoglutaric Acid, Sodium Salt,alpha Oxoglutarate,alpha-Ketoglutarate, Calcium
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008293 Malates Derivatives of malic acid (the structural formula: (COO-)2CH2CHOH), including its salts and esters.
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum

Related Publications

J J Hautecler, and C M Sluse-Goffart, and A Evens, and C Duyckaerts, and F E Sluse
October 1980, FEBS letters,
J J Hautecler, and C M Sluse-Goffart, and A Evens, and C Duyckaerts, and F E Sluse
May 1992, Biochimica et biophysica acta,
J J Hautecler, and C M Sluse-Goffart, and A Evens, and C Duyckaerts, and F E Sluse
August 1988, Biochimica et biophysica acta,
J J Hautecler, and C M Sluse-Goffart, and A Evens, and C Duyckaerts, and F E Sluse
August 1994, European journal of biochemistry,
J J Hautecler, and C M Sluse-Goffart, and A Evens, and C Duyckaerts, and F E Sluse
July 1991, Biochimica et biophysica acta,
J J Hautecler, and C M Sluse-Goffart, and A Evens, and C Duyckaerts, and F E Sluse
September 1972, European journal of biochemistry,
J J Hautecler, and C M Sluse-Goffart, and A Evens, and C Duyckaerts, and F E Sluse
January 1988, Biochimica et biophysica acta,
J J Hautecler, and C M Sluse-Goffart, and A Evens, and C Duyckaerts, and F E Sluse
November 1986, Archives of biochemistry and biophysics,
J J Hautecler, and C M Sluse-Goffart, and A Evens, and C Duyckaerts, and F E Sluse
May 1974, The Biochemical journal,
J J Hautecler, and C M Sluse-Goffart, and A Evens, and C Duyckaerts, and F E Sluse
March 1987, Biochimica et biophysica acta,
Copied contents to your clipboard!