Intercellular adhesion molecule 1 activation induces tyrosine phosphorylation of the cytoskeleton-associated protein cortactin in brain microvessel endothelial cells. 1994

O Durieu-Trautmann, and N Chaverot, and S Cazaubon, and A D Strosberg, and P O Couraud
Laboratoire d'Immuno-Pharmacologie Moléculaire, Centre National de la Recherche Scientifique UPR 0415, Université Paris VII, France.

Inflammatory diseases of the central nervous system, such as multiple sclerosis or experimental autoimmune encephalomyelitis, are characterized by adhesion of lymphocytes on cerebral microvascular endothelium, followed by transendothelial migration into the brain parenchyma. T lymphocyte adhesion to vascular endothelial cells is mediated by several types of adhesion molecules, including the integrin leukocyte function-associated molecule 1 and its endothelial counter receptor intercellular adhesion molecule 1 (ICAM-1), of the immunoglobulin superfamily. In order to understand the molecular mechanisms that support lymphocyte extravasation, we intended to investigate a putative role of ICAM-1 in signal transduction in brain microvessel endothelial cells. Here we describe, using a well differentiated rat brain endothelial cell line (RBE4 cells), that ICAM-1 activation by a specific monoclonal antibody, or by syngeneic encephalitogenic T cells, induces tyrosine phosphorylation of several proteins together with stimulation of the tyrosine kinase p60src activity. One of the major tyrosine-phosphorylated proteins, of 85 kDa, has been identified by immunoprecipitation and immunoblotting, as the recently described actin-binding protein, p60src substrate, cortactin. These findings demonstrate that ICAM-1 activation transduces signals in brain endothelial cells, which may lead to cytoskeleton changes and transendothelial migration of lymphocytes into the brain.

UI MeSH Term Description Entries
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

O Durieu-Trautmann, and N Chaverot, and S Cazaubon, and A D Strosberg, and P O Couraud
November 2006, Journal of immunology (Baltimore, Md. : 1950),
O Durieu-Trautmann, and N Chaverot, and S Cazaubon, and A D Strosberg, and P O Couraud
May 2008, The Journal of biological chemistry,
O Durieu-Trautmann, and N Chaverot, and S Cazaubon, and A D Strosberg, and P O Couraud
July 1992, Journal of neuroimmunology,
O Durieu-Trautmann, and N Chaverot, and S Cazaubon, and A D Strosberg, and P O Couraud
December 2008, Chinese medical journal,
O Durieu-Trautmann, and N Chaverot, and S Cazaubon, and A D Strosberg, and P O Couraud
April 2007, Arteriosclerosis, thrombosis, and vascular biology,
O Durieu-Trautmann, and N Chaverot, and S Cazaubon, and A D Strosberg, and P O Couraud
June 2008, Circulation research,
O Durieu-Trautmann, and N Chaverot, and S Cazaubon, and A D Strosberg, and P O Couraud
July 2017, The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology,
O Durieu-Trautmann, and N Chaverot, and S Cazaubon, and A D Strosberg, and P O Couraud
August 1996, Brain research,
O Durieu-Trautmann, and N Chaverot, and S Cazaubon, and A D Strosberg, and P O Couraud
February 1998, Biochemical and biophysical research communications,
Copied contents to your clipboard!