Ionic mechanisms underlying cholecystokinin action in rat brain. 1994

P Boden, and G N Woodruff
Parke-Davis Neuroscience Research Centre, Addenbrookes Hospital, Cambridge, England.

UI MeSH Term Description Entries
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011949 Receptors, Cholecystokinin Cell surface proteins that bind cholecystokinin (CCK) with high affinity and trigger intracellular changes influencing the behavior of cells. Cholecystokinin receptors are activated by GASTRIN as well as by CCK-4; CCK-8; and CCK-33. Activation of these receptors evokes secretion of AMYLASE by pancreatic acinar cells, acid and PEPSIN by stomach mucosal cells, and contraction of the PYLORUS and GALLBLADDER. The role of the widespread CCK receptors in the central nervous system is not well understood. CCK Receptors,Caerulein Receptors,Cholecystokinin Octapeptide Receptors,Cholecystokinin Receptors,Pancreozymin Receptors,Receptors, CCK,Receptors, Caerulein,Receptors, Pancreozymin,Receptors, Sincalide,Sincalide Receptors,CCK Receptor,CCK-4 Receptors,CCK-8 Receptors,Cholecystokinin Receptor,Receptors, CCK-4,Receptors, CCK-8,Receptors, Cholecystokinin Octapeptide,CCK 4 Receptors,CCK 8 Receptors,Octapeptide Receptors, Cholecystokinin,Receptor, CCK,Receptor, Cholecystokinin,Receptors, CCK 4,Receptors, CCK 8
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002766 Cholecystokinin A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety. Pancreozymin,CCK-33,Cholecystokinin 33,Uropancreozymin
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001569 Benzodiazepines A group of two-ring heterocyclic compounds consisting of a benzene ring fused to a diazepine ring. Benzodiazepine,Benzodiazepine Compounds
D014151 Anti-Anxiety Agents Agents that alleviate ANXIETY, tension, and ANXIETY DISORDERS, promote sedation, and have a calming effect without affecting clarity of consciousness or neurologic conditions. ADRENERGIC BETA-ANTAGONISTS are commonly used in the symptomatic treatment of anxiety but are not included here. Anti-Anxiety Agent,Anti-Anxiety Drug,Anxiolytic,Anxiolytic Agent,Anxiolytic Agents,Tranquilizing Agents, Minor,Anti-Anxiety Drugs,Anti-Anxiety Effect,Anti-Anxiety Effects,Antianxiety Effect,Antianxiety Effects,Anxiolytic Effect,Anxiolytic Effects,Anxiolytics,Tranquillizing Agents, Minor,Agent, Anti-Anxiety,Agent, Anxiolytic,Agents, Anti-Anxiety,Agents, Anxiolytic,Agents, Minor Tranquilizing,Agents, Minor Tranquillizing,Anti Anxiety Agent,Anti Anxiety Agents,Anti Anxiety Drug,Anti Anxiety Drugs,Anti Anxiety Effect,Anti Anxiety Effects,Drug, Anti-Anxiety,Drugs, Anti-Anxiety,Effect, Anti-Anxiety,Effect, Antianxiety,Effect, Anxiolytic,Effects, Anti-Anxiety,Effects, Antianxiety,Effects, Anxiolytic,Minor Tranquilizing Agents,Minor Tranquillizing Agents
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory

Related Publications

P Boden, and G N Woodruff
September 1988, Clinical and experimental pharmacology & physiology,
P Boden, and G N Woodruff
January 2009, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
P Boden, and G N Woodruff
August 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P Boden, and G N Woodruff
January 1999, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
P Boden, and G N Woodruff
August 1990, American journal of physical medicine & rehabilitation,
P Boden, and G N Woodruff
June 1996, European journal of pharmacology,
P Boden, and G N Woodruff
January 1988, Neuropeptides,
P Boden, and G N Woodruff
July 1998, The American journal of physiology,
P Boden, and G N Woodruff
January 2012, Frontiers in human neuroscience,
P Boden, and G N Woodruff
February 1986, The Journal of physiology,
Copied contents to your clipboard!