D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. 1994

J F Smiley, and A I Levey, and B J Ciliax, and P S Goldman-Rakic
Section of Neurobiology, Yale School of Medicine, New Haven, CT 06510.

Antibodies to the D1 dopamine receptor were used to localize this protein in several areas of human and monkey cerebral cortex with light and electron microscopy. In addition to cell body labeling in monkeys, all areas of humans and monkeys had a neuropil label with a laminar distribution predicted by previous D1 receptor autoradiography studies. Using electron microscopy, this neuropil label was seen in numerous dendritic spines, in dendritic shafts, and in occasional axon terminals. While labeled spines were common, they represented only a subset of all cortical spines. Serial sectioning through labeled spines showed that the diaminobenzidine reaction product was usually not at postsynaptic densities but instead was displaced to the side of the large asymmetric (presumed glutamatergic) synapse. Furthermore, most labeled spines did not receive synapses with dopaminergic features, suggesting that many D1 receptors are at extrasynaptic sites, possibly receiving dopamine via diffusion in the neuropil. Similarly, double labeling failed to reveal D1 labeling at synapses of tyrosine hydroxylase immunoreactive axons. Localization to numerous dendritic spines suggests that a primary role of D1 receptors is modulation of glutamatergic input to cortical pyramidal cells.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014446 Tyrosine 3-Monooxygenase An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2. Tyrosine Hydroxylase,3-Monooxygenase, Tyrosine,Hydroxylase, Tyrosine,Tyrosine 3 Monooxygenase

Related Publications

J F Smiley, and A I Levey, and B J Ciliax, and P S Goldman-Rakic
March 2001, The Journal of comparative neurology,
J F Smiley, and A I Levey, and B J Ciliax, and P S Goldman-Rakic
September 1991, Journal of neurocytology,
J F Smiley, and A I Levey, and B J Ciliax, and P S Goldman-Rakic
July 2014, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J F Smiley, and A I Levey, and B J Ciliax, and P S Goldman-Rakic
January 1987, Acta neuropathologica,
J F Smiley, and A I Levey, and B J Ciliax, and P S Goldman-Rakic
February 2002, Proceedings of the National Academy of Sciences of the United States of America,
J F Smiley, and A I Levey, and B J Ciliax, and P S Goldman-Rakic
January 1969, Journal of the neurological sciences,
J F Smiley, and A I Levey, and B J Ciliax, and P S Goldman-Rakic
December 1975, Anatomy and embryology,
J F Smiley, and A I Levey, and B J Ciliax, and P S Goldman-Rakic
October 1992, Brain research. Molecular brain research,
J F Smiley, and A I Levey, and B J Ciliax, and P S Goldman-Rakic
October 1991, Brain research,
J F Smiley, and A I Levey, and B J Ciliax, and P S Goldman-Rakic
January 2000, Brain research,
Copied contents to your clipboard!