Naloxone-precipitated morphine withdrawal increases pontine glutamate levels in the rat. 1994

T Zhang, and Y Feng, and R W Rockhold, and I K Ho
Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson 39216-4505.

Extracellular fluid (ECF) levels of glutamate (Glu) and aspartate (Asp) were measured in the locus coeruleus (LC) during morphine withdrawal by using microdialysis in conscious morphine-dependent Sprague-Dawley rats. Guide cannulae were implanted chronically and rats were given intracerebroventricular (i.c.v.) infusions of morphine (26 nmol/1 microliters/hr) or saline (1 microliters/hr) for 3 days. Microdialysis probes (2 mm tip) were inserted into the LC 24 hr before precipitation of withdrawal by i.c.v. injection of naloxone (12 or 48 nmol/5 microliters). Behavioral evidence of withdrawal (teeth-chattering, wet-dog shakes, etc.) was detected following naloxone challenge in morphine, but not in saline-infused rats. Increases (P < 0.01) in ECF levels of Glu (and Asp, to a lesser degree) were noted after naloxone-precipitated withdrawal only in the morphine group. The ECF Glu levels in the LC increased from 9.6 +/- 2.7 to 15.5 +/- 5.0 microM following 12 nmol/5 microliters naloxone, and from 9.5 +/- 1.9 to 20.5 +/- 3.3 microM following 48 nmol/5 microliters naloxone, before and in the first 15 min sample after the precipitation of withdrawal in the morphine-dependent rats, respectively. These results provide direct evidence to support the role of excitatory amino acids within the LC in morphine withdrawal.

UI MeSH Term Description Entries
D008125 Locus Coeruleus Bluish-colored region in the superior angle of the FOURTH VENTRICLE floor, corresponding to melanin-like pigmented nerve cells which lie lateral to the PERIAQUEDUCTAL GRAY. Locus Caeruleus Complex,Locus Caeruleus,Locus Ceruleus,Locus Ceruleus Complex,Locus Coeruleus Complex,Nucleus Pigmentosus Pontis,Caeruleus Complex, Locus,Complex, Locus Caeruleus,Complex, Locus Ceruleus,Complex, Locus Coeruleus,Pontis, Nucleus Pigmentosus
D008297 Male Males
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D003956 Dialysis A process of selective diffusion through a membrane. It is usually used to separate low-molecular-weight solutes which diffuse through the membrane from the colloidal and high-molecular-weight solutes which do not. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Dialyses
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D013375 Substance Withdrawal Syndrome Physiological and psychological symptoms associated with withdrawal from the use of a drug after prolonged administration or habituation. The concept includes withdrawal from smoking or drinking, as well as withdrawal from an administered drug. Drug Withdrawal Symptoms,Withdrawal Symptoms,Drug Withdrawal Symptom,Substance Withdrawal Syndromes,Symptom, Drug Withdrawal,Symptom, Withdrawal,Symptoms, Drug Withdrawal,Symptoms, Withdrawal,Syndrome, Substance Withdrawal,Syndromes, Substance Withdrawal,Withdrawal Symptom,Withdrawal Symptom, Drug,Withdrawal Symptoms, Drug,Withdrawal Syndrome, Substance,Withdrawal Syndromes, Substance

Related Publications

T Zhang, and Y Feng, and R W Rockhold, and I K Ho
September 2001, Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan,
T Zhang, and Y Feng, and R W Rockhold, and I K Ho
February 1971, British journal of pharmacology,
T Zhang, and Y Feng, and R W Rockhold, and I K Ho
January 1990, NIDA research monograph,
T Zhang, and Y Feng, and R W Rockhold, and I K Ho
September 1990, Neuroreport,
T Zhang, and Y Feng, and R W Rockhold, and I K Ho
February 1989, The Journal of pharmacology and experimental therapeutics,
T Zhang, and Y Feng, and R W Rockhold, and I K Ho
October 1977, Psychopharmacology,
T Zhang, and Y Feng, and R W Rockhold, and I K Ho
April 1989, British journal of pharmacology,
T Zhang, and Y Feng, and R W Rockhold, and I K Ho
January 1986, NIDA research monograph,
T Zhang, and Y Feng, and R W Rockhold, and I K Ho
August 1993, Neuroreport,
T Zhang, and Y Feng, and R W Rockhold, and I K Ho
November 2003, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!