Effect of changes in myocardial epinephrine stores on plasma norepinephrine gradient across the dog heart. 1994

F Péronnet, and G Boudreau, and J de Champlain, and R Nadeau
Department of Physical Education, Faculty of Medicine, Université de Montréal, Quebec, Canada.

Plasma norepinephrine (NE) concentration ([NE]) gradient across the heart was measured under electrical stimulation of the left stellate ganglion (LSG; 4 Hz, 4 V, 2 ms pulse width, 1 min) in control (Ctrl) and in adrenalectomized (Adrx) dogs, without and with a 10-min epinephrine (Epi) infusion (92 ng.kg-1.min-1), which partly restored myocardial Epi stores in Adrx dogs (2.9 +/- 0.7 ng/g vs. 6.4 +/- 0.7 ng/g in Ctrl dogs) and slightly increased tissue Epi stores in Ctrl dogs (10.5 +/- 1.3 pg/g). Compared with Ctrl dogs (1,069 +/- 172 pg/ml), the [NE] gradient across the heart under stimulation of the LSG was not modified 1 wk after bilateral adrenalectomy (1,190 +/- 122 pg/ml) or after Epi infusion in Ctrl (1,134 +/- 276 pg/ml) and Adrx (1,259 +/- 279 pg/ml) dogs. The beta 2-antagonist ICI-118,551 significantly reduced the stimulation-induced [NE] gradient across the heart in Ctrl dogs (621 +/- 190 and 603 +/- 86 pg/ml without and with a 10-min Epi infusion, respectively) but not in Adrx dogs deprived of tissue Epi (1,345 +/- 345 pg/ml). Partial repletion of myocardial Epi stores in Adrx dogs restored the effect of ICI-118,551 on the stimulation-induced [NE] gradient (776 +/- 121 pg/ml). These results provide direct support of the hypothesis that tissue Epi, which originates from the adrenal medulla and which is released locally along with NE, is the endogenous agonist for presynaptic beta 2-receptors and potentiates NE release.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011412 Propanolamines AMINO ALCOHOLS containing the propanolamine (NH2CH2CHOHCH2) group and its derivatives. Aminopropanols
D002320 Cardiovascular Physiological Phenomena Processes and properties of the CARDIOVASCULAR SYSTEM as a whole or of any of its parts. Cardiovascular Physiologic Processes,Cardiovascular Physiological Processes,Cardiovascular Physiology,Cardiovascular Physiological Concepts,Cardiovascular Physiological Phenomenon,Cardiovascular Physiological Process,Physiology, Cardiovascular,Cardiovascular Physiological Concept,Cardiovascular Physiological Phenomenas,Concept, Cardiovascular Physiological,Concepts, Cardiovascular Physiological,Phenomena, Cardiovascular Physiological,Phenomenon, Cardiovascular Physiological,Physiologic Processes, Cardiovascular,Physiological Concept, Cardiovascular,Physiological Concepts, Cardiovascular,Physiological Phenomena, Cardiovascular,Physiological Phenomenon, Cardiovascular,Physiological Process, Cardiovascular,Physiological Processes, Cardiovascular,Process, Cardiovascular Physiological,Processes, Cardiovascular Physiologic,Processes, Cardiovascular Physiological
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D000315 Adrenalectomy Excision of one or both adrenal glands. (From Dorland, 28th ed) Adrenalectomies
D000319 Adrenergic beta-Antagonists Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety. Adrenergic beta-Antagonist,Adrenergic beta-Receptor Blockader,Adrenergic beta-Receptor Blockaders,beta-Adrenergic Antagonist,beta-Adrenergic Blocker,beta-Adrenergic Blocking Agent,beta-Adrenergic Blocking Agents,beta-Adrenergic Receptor Blockader,beta-Adrenergic Receptor Blockaders,beta-Adrenoceptor Antagonist,beta-Blockers, Adrenergic,beta-Adrenergic Antagonists,beta-Adrenergic Blockers,beta-Adrenoceptor Antagonists,Adrenergic beta Antagonist,Adrenergic beta Antagonists,Adrenergic beta Receptor Blockader,Adrenergic beta Receptor Blockaders,Adrenergic beta-Blockers,Agent, beta-Adrenergic Blocking,Agents, beta-Adrenergic Blocking,Antagonist, beta-Adrenergic,Antagonist, beta-Adrenoceptor,Antagonists, beta-Adrenergic,Antagonists, beta-Adrenoceptor,Blockader, Adrenergic beta-Receptor,Blockader, beta-Adrenergic Receptor,Blockaders, Adrenergic beta-Receptor,Blockaders, beta-Adrenergic Receptor,Blocker, beta-Adrenergic,Blockers, beta-Adrenergic,Blocking Agent, beta-Adrenergic,Blocking Agents, beta-Adrenergic,Receptor Blockader, beta-Adrenergic,Receptor Blockaders, beta-Adrenergic,beta Adrenergic Antagonist,beta Adrenergic Antagonists,beta Adrenergic Blocker,beta Adrenergic Blockers,beta Adrenergic Blocking Agent,beta Adrenergic Blocking Agents,beta Adrenergic Receptor Blockader,beta Adrenergic Receptor Blockaders,beta Adrenoceptor Antagonist,beta Adrenoceptor Antagonists,beta Blockers, Adrenergic,beta-Antagonist, Adrenergic,beta-Antagonists, Adrenergic,beta-Receptor Blockader, Adrenergic,beta-Receptor Blockaders, Adrenergic

Related Publications

F Péronnet, and G Boudreau, and J de Champlain, and R Nadeau
February 1971, American heart journal,
F Péronnet, and G Boudreau, and J de Champlain, and R Nadeau
January 1983, Hypertension (Dallas, Tex. : 1979),
F Péronnet, and G Boudreau, and J de Champlain, and R Nadeau
January 1977, Acta medica Academiae Scientiarum Hungaricae,
F Péronnet, and G Boudreau, and J de Champlain, and R Nadeau
January 1971, Anesthesiology,
F Péronnet, and G Boudreau, and J de Champlain, and R Nadeau
April 1989, Annals of emergency medicine,
F Péronnet, and G Boudreau, and J de Champlain, and R Nadeau
January 1983, Advances in myocardiology,
F Péronnet, and G Boudreau, and J de Champlain, and R Nadeau
June 1959, The American journal of physiology,
F Péronnet, and G Boudreau, and J de Champlain, and R Nadeau
June 2005, Reproductive medicine and biology,
F Péronnet, and G Boudreau, and J de Champlain, and R Nadeau
January 1961, Anesthesiology,
F Péronnet, and G Boudreau, and J de Champlain, and R Nadeau
March 1958, The Journal of laboratory and clinical medicine,
Copied contents to your clipboard!