Domoic acid induced release of [3H]GABA in cultured chick retina cells. 1994

M Alfonso, and R Duran, and C B Duarte, and I L Ferreira, and A P Carvalho
Department of Fundamental Biology, University of Vigo, Spain.

The effect of the neurotoxin domoic acid (DOM), a structural analogue of kainic acid, on the release of [3H]gamma-aminobutyric acid (GABA) and on the [Ca2+]i was studied in cultured chick retina cells. DOM stimulated dose-dependently the release of [3H]GABA with an EC50 of 2.5 microM. In Ca(2+)-containing medium (1 mM), DOM (5 microM) increased the [Ca2+]i by about 190 nM and evoked the release of 11.8 +/- 1.3% of the intracellular [3H]GABA, while in the absence of extracellular Ca2+ DOM induced the release of only 7.9 +/- 1.4% of the accumulated [3H]GABA. The Ca(2+)-independent release of [3H]GABA was blocked by the non-competitive inhibitor of the GABA carrier 1-(2-(((diphenylmethylene)amino)oxy)ethyl)-1,2,5,6-tetrahydro-3-py ridine- carboxylic acid hydrochloride (NNC-711), but a component of Ca(2+)-dependent release remains. DOM evoked Ca(2+)-independent release of [3H]GABA was significantly depressed in the absence of external Na+ and completely blocked by the non-selective antagonist of the non-NMDA glutamate receptors, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Similarly, CNQX decreased the [Ca2+]i response to DOM, whereas L(+)-2-amino-3-phosphonopropionic acid (L-AP3), an antagonist of the metabotropic glutamate receptors, was without effect. MK-801 did not affect the release of [3H]GABA stimulated by DOM. Taken together our results indicate that DOM evokes both Ca(2+)-dependent and Ca(2+)-independent release of [3H]GABA, most likely by activating kainate receptors.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D009539 Nicotinic Acids 2-, 3-, or 4-Pyridinecarboxylic acids. Pyridine derivatives substituted with a carboxy group at the 2-, 3-, or 4-position. The 3-carboxy derivative (NIACIN) is active as a vitamin. Acids, Nicotinic
D009557 Nipecotic Acids Acids, Nipecotic
D010091 Oximes Compounds that contain the radical R2C Aldoximes,Hydroxyimino Compounds,Ketoxime,Ketoximes,Oxime,Compounds, Hydroxyimino
D011810 Quinoxalines Quinoxaline
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick

Related Publications

M Alfonso, and R Duran, and C B Duarte, and I L Ferreira, and A P Carvalho
September 1992, Brain research,
M Alfonso, and R Duran, and C B Duarte, and I L Ferreira, and A P Carvalho
August 1994, Brain research,
M Alfonso, and R Duran, and C B Duarte, and I L Ferreira, and A P Carvalho
August 1998, The European journal of neuroscience,
M Alfonso, and R Duran, and C B Duarte, and I L Ferreira, and A P Carvalho
November 1994, Brain research,
M Alfonso, and R Duran, and C B Duarte, and I L Ferreira, and A P Carvalho
November 1997, FEBS letters,
M Alfonso, and R Duran, and C B Duarte, and I L Ferreira, and A P Carvalho
January 1995, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
M Alfonso, and R Duran, and C B Duarte, and I L Ferreira, and A P Carvalho
May 1993, Brain research,
M Alfonso, and R Duran, and C B Duarte, and I L Ferreira, and A P Carvalho
May 1995, Annals of the New York Academy of Sciences,
M Alfonso, and R Duran, and C B Duarte, and I L Ferreira, and A P Carvalho
January 1999, In vitro & molecular toxicology,
Copied contents to your clipboard!