P-glycoprotein expression in classical multi-drug resistant leukaemia cells does not correlate with enhanced chloride channel activity. 1994

X Wang, and D M Wall, and J D Parkin, and J R Zalcberg, and R E Kemm
Department of Physiology, University of Melbourne, Parkville, Australia.

1. P-glycoprotein (Pgp) is an ATP-dependent drug efflux pump responsible for classical multi-drug resistance (MDR). 2. Pgp is part of a supergene family of membrane transport proteins that includes the cystic fibrosis gene product. 3. Transfection of cells with the MDR1 gene has been previously shown to generate volume-regulated chloride channel activity in association with Pgp expression. 4. We have used whole-cell patch clamping to examine the drug-sensitive T lymphoblastic cell line CEM-CCRF and its classical MDR derivative CEM/VLB100. The results suggest that expression of Pgp is not associated with increased chloride channel activity in this multi-drug resistant cell line. 5. We were unable to confirm previously reported results in MDR1 transfected cell lines that suggested that Pgp was associated with the presence of volume-regulated chloride channels.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015458 Leukemia, T-Cell A malignant disease of the T-LYMPHOCYTES in the bone marrow, thymus, and/or blood. Leukemia, Lymphocytic, T-Cell,Lymphocytic Leukemia, T-Cell,T-Cell Leukemia,T-Lymphocytic Leukemia,Leukemia, Lymphocytic, T Cell,T Lymphocytic Leukemia,Leukemia, T Cell,Leukemia, T Lymphocytic,Leukemia, T-Cell Lymphocytic,Leukemia, T-Lymphocytic,Leukemias, T Lymphocytic,Leukemias, T-Cell,Leukemias, T-Cell Lymphocytic,Leukemias, T-Lymphocytic,Lymphocytic Leukemia, T,Lymphocytic Leukemia, T Cell,Lymphocytic Leukemias, T,Lymphocytic Leukemias, T-Cell,T Cell Leukemia,T Lymphocytic Leukemias,T-Cell Leukemias,T-Cell Lymphocytic Leukemia,T-Cell Lymphocytic Leukemias,T-Lymphocytic Leukemias
D018118 Chloride Channels Cell membrane glycoproteins that form channels to selectively pass chloride ions. Nonselective blockers include FENAMATES; ETHACRYNIC ACID; and TAMOXIFEN. CaCC,Calcium-Activated Chloride Channel,Chloride Ion Channel,Chlorine Channel,Ion Channels, Chloride,CaCCs,Calcium-Activated Chloride Channels,Chloride Channel,Chloride Ion Channels,Chlorine Channels,Ion Channel, Chloride,Calcium Activated Chloride Channel,Calcium Activated Chloride Channels,Channel, Calcium-Activated Chloride,Channel, Chloride,Channel, Chloride Ion,Channel, Chlorine,Channels, Calcium-Activated Chloride,Channels, Chloride,Channels, Chloride Ion,Channels, Chlorine,Chloride Channel, Calcium-Activated,Chloride Channels, Calcium-Activated

Related Publications

X Wang, and D M Wall, and J D Parkin, and J R Zalcberg, and R E Kemm
November 1995, The Journal of biological chemistry,
X Wang, and D M Wall, and J D Parkin, and J R Zalcberg, and R E Kemm
February 2009, Clinical and experimental immunology,
X Wang, and D M Wall, and J D Parkin, and J R Zalcberg, and R E Kemm
June 1993, International journal of oncology,
X Wang, and D M Wall, and J D Parkin, and J R Zalcberg, and R E Kemm
December 2018, Biochimica et biophysica acta. General subjects,
X Wang, and D M Wall, and J D Parkin, and J R Zalcberg, and R E Kemm
May 1995, The Journal of membrane biology,
X Wang, and D M Wall, and J D Parkin, and J R Zalcberg, and R E Kemm
May 1993, International journal of cancer,
X Wang, and D M Wall, and J D Parkin, and J R Zalcberg, and R E Kemm
May 1995, The Biochemical journal,
X Wang, and D M Wall, and J D Parkin, and J R Zalcberg, and R E Kemm
January 1991, Leukemia & lymphoma,
X Wang, and D M Wall, and J D Parkin, and J R Zalcberg, and R E Kemm
December 1994, Anti-cancer drugs,
Copied contents to your clipboard!