Excitatory amino acid receptors mediate the orofacial stereotypy elicited by dopaminergic stimulation of the ventrolateral striatum. 1994

A E Kelley, and J M Delfs
University of Wisconsin Medical School, Department of Psychiatry, Madison 53705.

The present experiments examined the role of excitatory amino acid receptors in the orofacial stereotypy induced by direct amphetamine microinjection into the ventrolateral striatum. In these experiments, the influence of prior intra-ventrolateral striatum treatment with various excitatory amino acid antagonists on the expression of amphetamine-stimulated oral stereotypy was observed. In all experiments, behavioral observations were conducted in the home cage using a time-sampling procedure. In the first experiment, different groups of rats received bilateral microinfusions of either kynurenic acid, 2-amino-5-phosphonopentanoic acid, 6,7-dinitroquinoxaline or dizocilpine maleate. The excitatory amino acid antagonists were administered immediately prior to bilateral microinfusions of d-amphetamine. Both N-methyl-D-aspartate and non-N-methyl-D-aspartate antagonists dose-dependently attenuated or blocked the expression of dopamine-mediated stereotypy. 2-Amino-5-phosphonopentanoic acid was the most potent of these compounds, totally suppressing stereotypy at a dose of 0.3 micrograms (equivalent to 1.5 nmol). In the second experiment, the same compounds were tested for their ability to suppress physostigmine-induced mouth movements. Cholinergic stimulation of the ventrolateral striatum has previously been shown to elicit non-directed mouth movements, quite distinguishable from stimulus-directed, amphetamine-induced biting. Excitatory amino acid antagonists were administered in the same doses prior to bilateral infusion of physostigmine (2.5 micrograms/0.5 microliters). The expression of physostigmine-induced mouth movements was for the most part not affected by excitatory amino acid antagonists, although dizocilpine maleate slightly reduced this oral behavior. In a third experiment, behavior was observed following infusion of the antagonists alone, using the same doses as in the previous experiments. No behavioral alterations were observed with the exception of a small increase in nonspecific mouth movements induced by kynurenic acid and 2-amino-5-phosphonopentanoic acid. These findings indicate that the expression of dopamine-mediated oral stereotypy, induced by amphetamine stimulation of the ventrolateral striatal region, is highly dependent on activation of striatal excitatory amino acid receptors. In contrast, oral behavior induced by cholinergic stimulation of the ventrolateral region is not mediated by glutamate input. These results are discussed in relation to the synaptic organization of neuronal elements within the striatum. Moreover, the relevance to further understanding of orofacial dyskinesias is noted.

UI MeSH Term Description Entries
D008297 Male Males
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D009055 Mouth The oval-shaped oral cavity located at the apex of the digestive tract and consisting of two parts: the vestibule and the oral cavity proper. Oral Cavity,Cavitas Oris,Cavitas oris propria,Mouth Cavity Proper,Oral Cavity Proper,Vestibule Oris,Vestibule of the Mouth,Cavity, Oral
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D010830 Physostigmine A cholinesterase inhibitor that is rapidly absorbed through membranes. It can be applied topically to the conjunctiva. It also can cross the blood-brain barrier and is used when central nervous system effects are desired, as in the treatment of severe anticholinergic toxicity. Eserine
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005145 Face The anterior portion of the head that includes the skin, muscles, and structures of the forehead, eyes, nose, mouth, cheeks, and jaw. Faces
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000661 Amphetamine A powerful central nervous system stimulant and sympathomimetic. Amphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulation of release of monamines, and inhibiting monoamine oxidase. Amphetamine is also a drug of abuse and a psychotomimetic. The l- and the d,l-forms are included here. The l-form has less central nervous system activity but stronger cardiovascular effects. The d-form is DEXTROAMPHETAMINE. Desoxynorephedrin,Levoamphetamine,Phenopromin,l-Amphetamine,Amfetamine,Amphetamine Sulfate,Amphetamine Sulfate (2:1),Centramina,Fenamine,Mydrial,Phenamine,Thyramine,levo-Amphetamine,Sulfate, Amphetamine,l Amphetamine,levo Amphetamine

Related Publications

A E Kelley, and J M Delfs
November 1995, Pharmacology, biochemistry, and behavior,
A E Kelley, and J M Delfs
August 1992, Proceedings of the National Academy of Sciences of the United States of America,
A E Kelley, and J M Delfs
November 1996, The American journal of physiology,
A E Kelley, and J M Delfs
October 1989, Neuroscience letters,
A E Kelley, and J M Delfs
April 1992, The American journal of physiology,
A E Kelley, and J M Delfs
March 2000, Pharmaceutica acta Helvetiae,
A E Kelley, and J M Delfs
January 1981, Progress in clinical and biological research,
A E Kelley, and J M Delfs
September 1994, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
Copied contents to your clipboard!