Target-derived molecules that influence the development of neurons in the avian ciliary ganglion. 1994

R Nishi
Department of Cell Biology and Anatomy, Oregon Health Sciences University, Portland 97201.

The developing avian ciliary ganglion has been a particularly amenable system for the identification, isolation, and characterization of putative target-derived molecules that mediate retrograde interactions. To date a number of biochemically distinct activities that regulate neuronal survival, transmitter phenotype, and chemosensitivity of ciliary ganglion neurons have been identified. Of these, only two survival-promoting molecules have been purified to homogeneity: ciliary neurotrophic factor and a related molecule, growth-promoting activity. A somatostatin-inducing activity found in cultured choroid cells is very likely to be chick activin A. Other molecules that regulate acetylcholine and acetylcholine receptor expression comigrate on a gel filtration column at a molecular weight of 50-60 kD, but they have yet to be isolated. Once molecules that mimic retrograde influences are identified, a number of criteria must be met before their physiological significance can be established. These criteria are (1) availability of the molecule from the target at the appropriate time in development; (2) ability of the neurons to respond to the molecule at the appropriate time in development; (3) demonstration that blocking the activity or availability of the molecule is able to block the target-derived developmental change expressed in the neurons. Of the molecules that are thought to retrogradely influence ciliary neuron development, only growth-promoting activity is known to meet criteria 1 and 2, and experiments are currently underway to test whether inhibition of growth-promoting activity in vivo will exacerbate normal cell death.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D005544 Forecasting The prediction or projection of the nature of future problems or existing conditions based upon the extrapolation or interpretation of existing scientific data or by the application of scientific methodology. Futurology,Projections and Predictions,Future,Predictions and Projections
D005726 Ganglia, Parasympathetic Ganglia of the parasympathetic nervous system, including the ciliary, pterygopalatine, submandibular, and otic ganglia in the cranial region and intrinsic (terminal) ganglia associated with target organs in the thorax and abdomen. Parasympathetic Ganglia,Ciliary Ganglion,Ganglion, Parasympathetic,Otic Ganglia,Pterygopalatine Ganglia,Submandibular Ganglia,Ciliary Ganglions,Ganglia, Otic,Ganglia, Pterygopalatine,Ganglia, Submandibular,Ganglias, Otic,Ganglias, Pterygopalatine,Ganglias, Submandibular,Ganglion, Ciliary,Ganglions, Ciliary,Otic Ganglias,Parasympathetic Ganglion,Pterygopalatine Ganglias,Submandibular Ganglias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001717 Birds Warm-blooded VERTEBRATES possessing FEATHERS and belonging to the class Aves. Aves,Bird
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016922 Cellular Senescence Process by which cells irreversibly stop dividing and enter a state of permanent growth arrest without undergoing CELL DEATH. Senescence can be induced by DNA DAMAGE or other cellular stresses, such as OXIDATIVE STRESS. Aging, Cell,Cell Aging,Cell Senescence,Replicative Senescence,Senescence, Cellular,Senescence, Replicative,Cell Ageing,Cellular Ageing,Cellular Aging,Ageing, Cell,Ageing, Cellular,Aging, Cellular,Senescence, Cell
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve

Related Publications

R Nishi
April 1997, Annals of the New York Academy of Sciences,
R Nishi
October 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R Nishi
January 1967, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
Copied contents to your clipboard!