Alterations in gene expression during mesoderm formation and axial patterning in Brachyury (T) embryos. 1994

P Rashbass, and V Wilson, and B Rosen, and R S Beddington
National Institute for Medical Research, London, United Kingdom.

The mouse T (Brachyury) deletion causes defective mesoderm formation and notochord morphogenesis, and abnormalities in the caudal neural tube and somites. To investigate the effect of the wild type T gene on concurrently expressed genes, we have compared expression of a panel of such genes in homozygous T mutants with that in wild type and heterozygous T/+ control embryos. Two classes of genes were used in this study: those implicated in primitive streak or mesoderm formation, and those which are differentially expressed in regions of the neural tube and somites. Results of wholemount in situ analysis show that the mRNA levels of Evx-1, Wnt-3a and Wnt-5a decrease in T/T embryos late in gastrulation, although earlier expression patterns are similar to control embryos. In contrast, BMP-4 and Msx-1 expression patterns remain similar throughout the period studied. Pax-3 and Pax-6, which are expressed in specific dorsoventral domains of the neural tube, both have ventrally extended expression domains in caudal T/T neural tube. This is consistent with a missing ventral signal provided by the notochord. However, the expression of Msx-1 in the most dorsal domain of the neural tube is unaltered in T/T embryos. Pax-1 and Pax-3, which are expressed in the sclerotome and dermamyotome respectively, are expressed correctly in anterior T/T somites, although the Pax-3 expression domain is widened ventromedially. This extension into ventromedial somite domains is more pronounced caudally, supporting a function for the notochord in ventralizing somites.

UI MeSH Term Description Entries
D008297 Male Males
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005260 Female Females
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D005801 Genes, Homeobox Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS. Genes, Homeotic,Homeobox Sequence,Homeotic Genes,Genes, Homeo Box,Homeo Box,Homeo Box Sequence,Homeo Boxes,Homeobox,Homeoboxes,Hox Genes,Sequence, Homeo Box,Gene, Homeo Box,Gene, Homeobox,Gene, Homeotic,Gene, Hox,Genes, Hox,Homeo Box Gene,Homeo Box Genes,Homeo Box Sequences,Homeobox Gene,Homeobox Genes,Homeobox Sequences,Homeotic Gene,Hox Gene,Sequence, Homeobox,Sequences, Homeo Box,Sequences, Homeobox

Related Publications

P Rashbass, and V Wilson, and B Rosen, and R S Beddington
April 1990, Trends in genetics : TIG,
P Rashbass, and V Wilson, and B Rosen, and R S Beddington
July 1992, Nature,
P Rashbass, and V Wilson, and B Rosen, and R S Beddington
July 1997, Mechanisms of development,
P Rashbass, and V Wilson, and B Rosen, and R S Beddington
December 2022, Nature ecology & evolution,
P Rashbass, and V Wilson, and B Rosen, and R S Beddington
January 1994, Development (Cambridge, England),
P Rashbass, and V Wilson, and B Rosen, and R S Beddington
January 1997, Cold Spring Harbor symposia on quantitative biology,
P Rashbass, and V Wilson, and B Rosen, and R S Beddington
July 1998, Mechanisms of development,
P Rashbass, and V Wilson, and B Rosen, and R S Beddington
November 2005, Developmental biology,
P Rashbass, and V Wilson, and B Rosen, and R S Beddington
May 1995, Development (Cambridge, England),
Copied contents to your clipboard!