Active transport by membrane vesicles from anaerobically grown Escherichia coli energized by electron transfer to ferricyanide and chlorate. 1976

J Boonstra, and H J Sips, and W N Konings

Active transport of amino acids by membrane vesicles from Escherichia coli, grown anaerobically on glucose in the presence of nitrate, can be energized under anaerobic conditions by electron transfer in the nitrate respiration system with formate as electron donor and nitrate as acceptor. A high rate of amino acid transport is also obtained under anaerobic conditions by electron transfer from formate to the nitrate analogue chlorate or to the membrane-impermeable electron acceptor ferricyanide. Electron transfer from formate to nitrate results in the generation of an electrical potential as is indicated by the uptake of the lipophilic cation triphenylmethylphosphonium. Ferricyanide accpets electrons from at least two sites of the nitrate respiration system. One of these sites appears to be nitrate reductase, because cytochrome b, reduced by formate, is completely reoxidized by ferricyanide and glutamate transport energized by formate plus ferricyanide and formate plus nitrate are affected by the same electron transfer inhibitors. A second site of electron transfer to ferricyanide appears to be located prior to nitrate reductase in the nitrate respiration system, since formate is oxidized at a higher rate in the presence of ferricyanide than with nitrate while formate/ferricyanide energizes transport of amino acids at a lower rate than formate/nitrate. Moreover, electron transfer inhibitors block electron transfer from formate to nitrate to a significantly higher extent than from formate to ferricyanide. The effects of irradiation of the membrane vesicles with near ultra-violet light suggest that quinones play an essential role in the electron transfer from formate to nitrate or ferricyanide. Irradiation blocks completely formate-dependent nitrate and ferricyanide reduction and active transport driven by formate/nitrate and formate/ferricyanide, but has hardly any effect on the activity of formate dehydrogenase and on ascorbate/phenazine methosulphate/oxygen-driven transport. Similar effects of ferricyanide have been observed in membrane vesicles from E. coli, grown anaerobically in the presence of fumarate. In these membrane vesicles a high rate of lactose and triphenylmethylphosphonium uptake under anaerobic conditions is obtained by electron transfer from glycerol 1-phosphate to fumarate and also to ferricyanide and evidence has been presented for the involvement of cytochromes in these electron transfers.

UI MeSH Term Description Entries
D007785 Lactose A disaccharide of GLUCOSE and GALACTOSE in human and cow milk. It is used in pharmacy for tablets, in medicine as a nutrient, and in industry. Anhydrous Lactose,Lactose, Anhydrous
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002704 Chlorates Inorganic salts of chloric acid that contain the ClO3- ion. Chlorate
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005292 Ferricyanides Inorganic salts of the hypothetical acid, H3Fe(CN)6.
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D000968 Antimycin A An antibiotic substance produced by Streptomyces species. It inhibits mitochondrial respiration and may deplete cellular levels of ATP. Antimycin A1 has been used as a fungicide, insecticide, and miticide. (From Merck Index, 12th ed) Butanoic acid, 2(or 3)-methyl-, 3-((3-(formylamino)-2-hydroxybenzoyl)amino)-8-hexyl-2,6-dimethyl-4,9-dioxo-1,5-dioxonan-7-yl ester,Antimycin A1

Related Publications

J Boonstra, and H J Sips, and W N Konings
December 1978, Journal of bacteriology,
J Boonstra, and H J Sips, and W N Konings
March 1976, The Biochemical journal,
J Boonstra, and H J Sips, and W N Konings
December 1975, Biochemistry,
J Boonstra, and H J Sips, and W N Konings
September 1977, European journal of biochemistry,
J Boonstra, and H J Sips, and W N Konings
January 1979, Methods in enzymology,
J Boonstra, and H J Sips, and W N Konings
April 1975, Biochimica et biophysica acta,
J Boonstra, and H J Sips, and W N Konings
June 1979, Canadian journal of biochemistry,
J Boonstra, and H J Sips, and W N Konings
May 1983, Journal of bacteriology,
J Boonstra, and H J Sips, and W N Konings
April 1978, Biochimica et biophysica acta,
Copied contents to your clipboard!