ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. 1993

M Sym, and J A Engebrecht, and G S Roeder
Department of Biology, Yale University, New Haven, Connecticut 06511-8112.

ZIP1 is a novel meiosis-specific gene required for chromosome synapsis and cell cycle progression in S. cerevisiae. zip1 strains undergo homologous chromosome pairing, but are defective in synaptonemal complex (SC) formation. The zip1 mutation confers a uniform arrest in meiosis prior to the first division. zip1 strains display nearly wild-type levels of commitment to meiotic recombination; however, mature reciprocal recombinants are not formed until cells are released from meiotic arrest by return to growth medium. DNA sequence analysis of ZIP1 reveals structural homology to a number of proteins containing coiled coils. Immunofluorescence experiments using anti-ZIP1 antibodies demonstrate that the ZIP1 protein localizes to synapsed meiotic chromosomes but not to unsynapsed axial elements. Taken together, these data suggest that ZIP1 is a component of the central region of the SC. We propose a model in which ZIP1 acts as a molecular zipper to bring homologous chromosomes in close apposition.

UI MeSH Term Description Entries
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

M Sym, and J A Engebrecht, and G S Roeder
November 2000, Molecular cell,
M Sym, and J A Engebrecht, and G S Roeder
February 2014, The Plant cell,
M Sym, and J A Engebrecht, and G S Roeder
May 1997, Science (New York, N.Y.),
M Sym, and J A Engebrecht, and G S Roeder
May 2006, The Journal of cell biology,
M Sym, and J A Engebrecht, and G S Roeder
December 2006, Nature cell biology,
M Sym, and J A Engebrecht, and G S Roeder
August 2023, Annual review of genomics and human genetics,
Copied contents to your clipboard!