Human relaxins in normal, benign and neoplastic breast tissue. 1994

L S Tashima, and G Mazoujian, and G D Bryant-Greenwood
Pacific Biomedical Research Center, University of Hawaii, Honolulu 96822.

Immunoreactive relaxin is present in human breast cyst fluid and postpartum milk without concurrent detectable serum levels, suggesting that the breast is a site of relaxin synthesis. Monoclonal and polyclonal antibodies to human relaxin H2 have been used to immunolocalize relaxins in normal, benign and neoplastic breast tissues with the avidin-biotin immunostaining technique. In view of the similarities in amino acid sequence between H1 and H2 relaxins, these antibodies to H2 relaxin are likely to detect either or both relaxins present in tissue sections. Staining patterns with these antibodies were identical and showed positive diffuse cytoplasmic staining in normal, lobular and ductal epithelium and in myoepithelial cells in breast tissues from normal prepubertal, cyclic, gestational, lactational and postmenopausal females. Relaxin staining was also present in epithelial and myoepithelial cells of ducts and lobules in benign breast disease as well as in metaplastic epithelium of apocrine microcysts. All breast carcinomas (infiltrating ductal, tubular, medullary, intraductal and infiltrating lobular carcinomas) had strong uniform cytoplasmic staining within the neoplastic epithelial cells. All staining was abolished in normal and neoplastic tissues when the polyclonal antibody was preabsorbed with relaxin. It was necessary to distinguish between the possibilities of relaxins being sequestered by breast tissue and local synthesis. Therefore, the expression of the H1, H2 or both human relaxin genes in normal and neoplastic breast tissues was studied by the isolation of RNA, synthesis of first strand cDNA and amplification by PCR using primer sets which amplified either both H1 and H2, or specifically only H1 or H2 relaxin. The coamplification of both relaxin genes was verified by Southern analysis, diagnostic restriction enzyme digestion and sequencing. The primer set for H1 relaxin detected H1 gene expression in 1 out of 8 normal and 9 out of 12 neoplastic breast RNA samples. The H2 relaxin gene was found to be expressed in 3 out of 8 of the normal samples but in all 12 of the neoplastic samples, suggesting that this gene is expressed at higher copy number in the neoplastic tissues. This is the first demonstration of the cellular immunolocalization of relaxin and relaxin gene expression in normal and neoplastic breast. This should allow further exploration of relaxin's role(s) in normal breast physiology and in its tumorigenesis.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D012065 Relaxin A water-soluble polypeptide (molecular weight approximately 8,000) extractable from the corpus luteum of pregnancy. It produces relaxation of the pubic symphysis and dilation of the uterine cervix in certain animal species. Its role in the human pregnant female is uncertain. (Dorland, 28th ed) Relaxin B
D012098 Reproduction The total process by which organisms produce offspring. (Stedman, 25th ed) Human Reproductive Index,Human Reproductive Indexes,Reproductive Period,Human Reproductive Indices,Index, Human Reproductive,Indexes, Human Reproductive,Indices, Human Reproductive,Period, Reproductive,Periods, Reproductive,Reproductive Index, Human,Reproductive Indices, Human,Reproductive Periods
D001940 Breast In humans, one of the paired regions in the anterior portion of the THORAX. The breasts consist of the MAMMARY GLANDS, the SKIN, the MUSCLES, the ADIPOSE TISSUE, and the CONNECTIVE TISSUES. Breasts
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002277 Carcinoma A malignant neoplasm made up of epithelial cells tending to infiltrate the surrounding tissues and give rise to metastases. It is a histological type of neoplasm and not a synonym for "cancer." Carcinoma, Anaplastic,Carcinoma, Spindle-Cell,Carcinoma, Undifferentiated,Carcinomatosis,Epithelial Neoplasms, Malignant,Epithelioma,Epithelial Tumors, Malignant,Malignant Epithelial Neoplasms,Neoplasms, Malignant Epithelial,Anaplastic Carcinoma,Anaplastic Carcinomas,Carcinoma, Spindle Cell,Carcinomas,Carcinomatoses,Epithelial Neoplasm, Malignant,Epithelial Tumor, Malignant,Epitheliomas,Malignant Epithelial Neoplasm,Malignant Epithelial Tumor,Malignant Epithelial Tumors,Neoplasm, Malignant Epithelial,Spindle-Cell Carcinoma,Spindle-Cell Carcinomas,Tumor, Malignant Epithelial,Undifferentiated Carcinoma,Undifferentiated Carcinomas
D005260 Female Females

Related Publications

L S Tashima, and G Mazoujian, and G D Bryant-Greenwood
July 1973, British journal of cancer,
L S Tashima, and G Mazoujian, and G D Bryant-Greenwood
July 1963, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
L S Tashima, and G Mazoujian, and G D Bryant-Greenwood
March 2006, European journal of cancer (Oxford, England : 1990),
L S Tashima, and G Mazoujian, and G D Bryant-Greenwood
January 1980, European urology,
L S Tashima, and G Mazoujian, and G D Bryant-Greenwood
January 1998, European journal of drug metabolism and pharmacokinetics,
L S Tashima, and G Mazoujian, and G D Bryant-Greenwood
June 1975, Clinical obstetrics and gynecology,
L S Tashima, and G Mazoujian, and G D Bryant-Greenwood
January 2011, Neoplasma,
L S Tashima, and G Mazoujian, and G D Bryant-Greenwood
November 1984, Cancer research,
L S Tashima, and G Mazoujian, and G D Bryant-Greenwood
January 2002, The Journal of pathology,
L S Tashima, and G Mazoujian, and G D Bryant-Greenwood
February 1963, Cancer,
Copied contents to your clipboard!