Fluorescence studies of phosphatidylcholine micelle mixing: relevance to phospholipase kinetics. 1994

C E Soltys, and M F Roberts
Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02167.

Two fluorescent micellar phospholipid probes (1-hexanoyl-2-(1-pyrenebutyroyl)phosphatidylcholine and 1-octanoyl-2-(1-pyrenebutyroyl)phosphatidylcholine) have been synthesized, characterized, and used to monitor the dynamics of lipid/amphiphile exchange in a variety of detergents and phospholipid micelles using both steady-state and stopped-flow fluorescence techniques. The ratio of the pyrene monomer to excimer band is a good indicator of the extent of lipid mixing at equilibrium. Following the time dependence of increase in the monomer band with stopped-flow methodology provides a rate constant for this exchange process (most systems were well fit with a single exponential). Short-chain pyrene-labeled phosphatidylcholine mixing with Triton X-100 micelles is extremely fast and follows a concentration dependence indicative of the importance of micelle collisions for the exchange process. Submicellar amounts of Triton have no effect on the fluorescent dynamics of the probe molecule. Other detergents such as beta-octyl glucoside and deoxycholate are also effective at higher concentrations, although significant differences exist in the extent of probe mixing. Short-chain diacylphosphatidylcholine and lysophosphatidylcholine mixing rates are moderately fast with mixing times that decrease as the hydrophobicity/chain length of the diluent matrix increases. The rate constants for lipid exchange can be compared to turnover rates of several phospholipases in these assay systems. Anomalous mixing behavior of unusual micelle forming lipids [bolaforms and omega-carboxylate phosphatidylcholines [Lewis, K. A., Bian, J., Sweeny, A., & Roberts, M. F. (1994) Biochemistry 29, 9962-9970] and polymerizable phosphatidylcholines [Soltys, C. E., Bian, J., & Roberts, M. F. (1993) Biochemistry 32, 9545-9551] is particularly helpful in understanding kinetics of water-soluble phospholipases on these systems.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010740 Phospholipases A class of enzymes that catalyze the hydrolysis of phosphoglycerides or glycerophosphatidates. EC 3.1.-. Lecithinases,Lecithinase,Phospholipase
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D003102 Colloids Two-phase systems in which one is uniformly dispersed in another as particles small enough so they cannot be filtered or will not settle out. The dispersing or continuous phase or medium envelops the particles of the discontinuous phase. All three states of matter can form colloids among each other. Hydrocolloids,Colloid,Hydrocolloid
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D015335 Molecular Probes A group of atoms or molecules attached to other molecules or cellular structures and used in studying the properties of these molecules and structures. Radioactive DNA or RNA sequences are used in MOLECULAR GENETICS to detect the presence of a complementary sequence by NUCLEIC ACID HYBRIDIZATION. Molecular Probe,Probe, Molecular,Probes, Molecular
D017022 Flow Injection Analysis The analysis of a chemical substance by inserting a sample into a carrier stream of reagent using a sample injection valve that propels the sample downstream where mixing occurs in a coiled tube, then passes into a flow-through detector and a recorder or other data handling device. Analysis, Flow Injection,Analyses, Flow Injection,Flow Injection Analyses,Injection Analyses, Flow,Injection Analysis, Flow

Related Publications

C E Soltys, and M F Roberts
October 1997, Biochimica et biophysica acta,
C E Soltys, and M F Roberts
June 1998, Applied optics,
C E Soltys, and M F Roberts
February 1993, The Journal of biological chemistry,
C E Soltys, and M F Roberts
October 1988, Journal of lipid research,
C E Soltys, and M F Roberts
January 1984, The Italian journal of biochemistry,
C E Soltys, and M F Roberts
January 1997, Biochimica et biophysica acta,
Copied contents to your clipboard!