Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. 1994

K D Jofuku, and B G den Boer, and M Van Montagu, and J K Okamuro
Sinsheimer Laboratories, Department of Biology, University of California, Santa Cruz 95064.

APETALA2 (AP2) plays a central role in the establishment of the floral meristem, the specification of floral organ identity, and the regulation of floral homeotic gene expression in Arabidopsis. We show here that in addition to its functions during flower development, AP2 activity is also required during seed development. We isolated the AP2 gene and found that it encodes a putative nuclear protein that is distinguished by an essential 68-amino acid repeated motif, the AP2 domain. Consistent with its genetic functions, we determined that AP2 is expressed at the RNA level in all four types of floral organs--sepals, petals, stamens, and carpels--and in developing ovules. Thus, AP2 gene transcription does not appear to be spatially restricted by the floral homeotic gene AGAMOUS as predicted by previous studies. We also found that AP2 is expressed at the RNA level in the inflorescence meristem and in nonfloral organs, including leaf and stem. Taken together, our results suggest that AP2 represents a new class of plant regulatory proteins that may play a general role in the control of Arabidopsis development.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D005801 Genes, Homeobox Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS. Genes, Homeotic,Homeobox Sequence,Homeotic Genes,Genes, Homeo Box,Homeo Box,Homeo Box Sequence,Homeo Boxes,Homeobox,Homeoboxes,Hox Genes,Sequence, Homeo Box,Gene, Homeo Box,Gene, Homeobox,Gene, Homeotic,Gene, Hox,Genes, Hox,Homeo Box Gene,Homeo Box Genes,Homeo Box Sequences,Homeobox Gene,Homeobox Genes,Homeobox Sequences,Homeotic Gene,Hox Gene,Sequence, Homeobox,Sequences, Homeo Box,Sequences, Homeobox
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012639 Seeds The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield. Diaspores,Elaiosomes,Embryos, Plant,Plant Embryos,Plant Zygotes,Zygotes, Plant,Diaspore,Elaiosome,Embryo, Plant,Plant Embryo,Plant Zygote,Seed,Zygote, Plant
D017343 Genes, Plant The functional hereditary units of PLANTS. Plant Genes,Gene, Plant,Plant Gene
D017360 Arabidopsis A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development. Arabidopsis thaliana,Cress, Mouse-ear,A. thaliana,A. thalianas,Arabidopses,Arabidopsis thalianas,Cress, Mouse ear,Cresses, Mouse-ear,Mouse-ear Cress,Mouse-ear Cresses,thaliana, A.,thaliana, Arabidopsis,thalianas, A.
D018398 Homeodomain Proteins Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL). Homeo Domain Protein,Homeobox Protein,Homeobox Proteins,Homeodomain Protein,Homeoprotein,Homeoproteins,Homeotic Protein,Homeo Domain Proteins,Homeotic Proteins,Domain Protein, Homeo,Protein, Homeo Domain,Protein, Homeobox,Protein, Homeodomain,Protein, Homeotic,Proteins, Homeo Domain,Proteins, Homeobox,Proteins, Homeodomain,Proteins, Homeotic

Related Publications

K D Jofuku, and B G den Boer, and M Van Montagu, and J K Okamuro
February 2005, Proceedings of the National Academy of Sciences of the United States of America,
K D Jofuku, and B G den Boer, and M Van Montagu, and J K Okamuro
June 1991, Cell,
K D Jofuku, and B G den Boer, and M Van Montagu, and J K Okamuro
December 2011, Development (Cambridge, England),
K D Jofuku, and B G den Boer, and M Van Montagu, and J K Okamuro
February 1996, The Plant cell,
K D Jofuku, and B G den Boer, and M Van Montagu, and J K Okamuro
February 2005, Proceedings of the National Academy of Sciences of the United States of America,
K D Jofuku, and B G den Boer, and M Van Montagu, and J K Okamuro
March 2004, Science (New York, N.Y.),
K D Jofuku, and B G den Boer, and M Van Montagu, and J K Okamuro
November 1990, Science (New York, N.Y.),
K D Jofuku, and B G den Boer, and M Van Montagu, and J K Okamuro
January 1997, The Plant cell,
K D Jofuku, and B G den Boer, and M Van Montagu, and J K Okamuro
December 2009, Sexual plant reproduction,
K D Jofuku, and B G den Boer, and M Van Montagu, and J K Okamuro
July 1995, Trends in genetics : TIG,
Copied contents to your clipboard!