Retinoic acid receptors: involvement in acute promyelocytic leukemia. 1994

A Agadir, and M Cornic, and B Gourmel, and P Lefebvre, and L Degos, and C Chomienne
Laboratoire de Biologie Cellulaire Hématopoïétique, Hôpital Saint-Louis, Paris, France.

Acute promyelocytic leukemia (APL), is a homogeneous subgroup of acute myelogenous leukemias characterized by phenotypic and genetic markers. APL is associated with a reciprocal chromosomal translocation t(15,17) which has been shown to disrupt the retinoic acid receptor alpha (RAR alpha) gene. As a result, a portion of the RAR alpha gene becomes fused with a chromosome 15 locus termed PML (promyelocytic myeloid leukemia) from which chimeric PML/RAR alpha fusion mRNAs are expressed. The presence of these fusion transcripts in APL patients strongly support the hypothesis that both the t(15;17), and thus PML/RAR alpha, play a crucial role in the leukemogenesis of this disease. APL cells are specifically responsive to all-trans retinoic acid (ATRA) and this characteristic has allowed the first differentiation therapy with retinoic acid. However, failure or partial responses are observed and, though this has most frequently been reported in patients at second or third relapse. The molecular basis of the absence of ATRA response in these patients has not been determined.

UI MeSH Term Description Entries
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002884 Chromosomes, Human, Pair 15 A specific pair of GROUP D CHROMOSOMES of the human chromosome classification. Chromosome 15
D002886 Chromosomes, Human, Pair 17 A specific pair of GROUP E CHROMOSOMES of the human chromosome classification. Chromosome 17
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014178 Translocation, Genetic A type of chromosome aberration characterized by CHROMOSOME BREAKAGE and transfer of the broken-off portion to another location, often to a different chromosome. Chromosomal Translocation,Translocation, Chromosomal,Chromosomal Translocations,Genetic Translocation,Genetic Translocations,Translocations, Chromosomal,Translocations, Genetic
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid
D014411 Neoplastic Stem Cells Highly proliferative, self-renewing, and colony-forming stem cells which give rise to NEOPLASMS. Cancer Stem Cells,Colony-Forming Units, Neoplastic,Stem Cells, Neoplastic,Tumor Stem Cells,Neoplastic Colony-Forming Units,Tumor Initiating Cells,Cancer Stem Cell,Cell, Cancer Stem,Cell, Neoplastic Stem,Cell, Tumor Initiating,Cell, Tumor Stem,Cells, Cancer Stem,Cells, Neoplastic Stem,Cells, Tumor Initiating,Cells, Tumor Stem,Colony Forming Units, Neoplastic,Colony-Forming Unit, Neoplastic,Initiating Cell, Tumor,Initiating Cells, Tumor,Neoplastic Colony Forming Units,Neoplastic Colony-Forming Unit,Neoplastic Stem Cell,Stem Cell, Cancer,Stem Cell, Neoplastic,Stem Cell, Tumor,Stem Cells, Cancer,Stem Cells, Tumor,Tumor Initiating Cell,Tumor Stem Cell,Unit, Neoplastic Colony-Forming,Units, Neoplastic Colony-Forming

Related Publications

A Agadir, and M Cornic, and B Gourmel, and P Lefebvre, and L Degos, and C Chomienne
October 2002, Leukemia,
A Agadir, and M Cornic, and B Gourmel, and P Lefebvre, and L Degos, and C Chomienne
April 1997, Wisconsin medical journal,
A Agadir, and M Cornic, and B Gourmel, and P Lefebvre, and L Degos, and C Chomienne
March 1994, Leukemia,
A Agadir, and M Cornic, and B Gourmel, and P Lefebvre, and L Degos, and C Chomienne
August 1992, Annals of internal medicine,
A Agadir, and M Cornic, and B Gourmel, and P Lefebvre, and L Degos, and C Chomienne
October 2001, Oncogene,
A Agadir, and M Cornic, and B Gourmel, and P Lefebvre, and L Degos, and C Chomienne
June 2003, Leukemia,
A Agadir, and M Cornic, and B Gourmel, and P Lefebvre, and L Degos, and C Chomienne
June 1993, Annals of the New York Academy of Sciences,
A Agadir, and M Cornic, and B Gourmel, and P Lefebvre, and L Degos, and C Chomienne
January 1991, Nouvelle revue francaise d'hematologie,
A Agadir, and M Cornic, and B Gourmel, and P Lefebvre, and L Degos, and C Chomienne
February 1998, The New England journal of medicine,
A Agadir, and M Cornic, and B Gourmel, and P Lefebvre, and L Degos, and C Chomienne
October 1997, The New England journal of medicine,
Copied contents to your clipboard!