Potassium-induced depolarization stimulates somatostatin gene expression in cultured fetal rat cerebrocortical cells. 1993

L Cacicedo, and R M Tolón, and M J Lorenzo, and J López, and F Sánchez Franco
Servicio de Endocrinologia, Hospital Ramón y Cajal, Madrid, Spain.

The stimulatory effect of potassium depolarization upon somatostatin mRNA (SS mRNA) levels in primary cultures of fetal cerebrocortical cells was analyzed. Depolarizing stimuli, such as 56 mM K+ concentration for 24 hours, elicited an increase in immunoreactive somatostatin (IR-SS) release to the media and SS mRNA levels, suggesting that somatostatin secretion can be coupled to SS mRNA accumulation. These changes were inhibited by the Ca2+ channel antagonist verapamil (VPM). In contrast, Na+ channel blockade by tetrodotoxin (TTX) did not modify the 24 h potassium-induced increase in SS mRNA. These results suggest that the induction of SS mRNA expression by K+ involves the modulation of calcium ion channels.

UI MeSH Term Description Entries
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

L Cacicedo, and R M Tolón, and M J Lorenzo, and J López, and F Sánchez Franco
February 2011, Brain research,
L Cacicedo, and R M Tolón, and M J Lorenzo, and J López, and F Sánchez Franco
April 1991, Journal of neurochemistry,
L Cacicedo, and R M Tolón, and M J Lorenzo, and J López, and F Sánchez Franco
October 2001, Brain research. Molecular brain research,
L Cacicedo, and R M Tolón, and M J Lorenzo, and J López, and F Sánchez Franco
May 1989, Journal of neurochemistry,
L Cacicedo, and R M Tolón, and M J Lorenzo, and J López, and F Sánchez Franco
December 1989, Acta physiologica Scandinavica,
L Cacicedo, and R M Tolón, and M J Lorenzo, and J López, and F Sánchez Franco
September 1993, The American journal of physiology,
L Cacicedo, and R M Tolón, and M J Lorenzo, and J López, and F Sánchez Franco
June 1984, Endocrinology,
L Cacicedo, and R M Tolón, and M J Lorenzo, and J López, and F Sánchez Franco
May 1988, The Journal of clinical endocrinology and metabolism,
L Cacicedo, and R M Tolón, and M J Lorenzo, and J López, and F Sánchez Franco
July 2009, Histochemistry and cell biology,
L Cacicedo, and R M Tolón, and M J Lorenzo, and J López, and F Sánchez Franco
May 1998, Molecular and cellular endocrinology,
Copied contents to your clipboard!