Enhancement of arterial relaxation by long-term atenolol treatment in spontaneously hypertensive rats. 1994

M Kähönen, and H Mäkynen, and P Arvola, and I Pörsti
Department of Biomedical Sciences, University of Tampere, Finland.

1. The effects of long-term atenolol (25 mg kg-1 day-1) therapy on arterial function were studied in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. The 14-week treatment attenuated the increase in blood pressure by approximately 30 mmHg in SHR, but did not affect blood pressure in WKY rats. 2. Responses of mesenteric arterial rings in vitro were examined at the end of the study. The relaxation to acetylcholine was similar in WKY rats and atenolol-treated SHR and more pronounced than in untreated SHR, whereas the relaxation to the nitric oxide donor 3-morpholinosydnonimine (SIN-1) was comparable in all study groups. Moreover, after maximal relaxations to acetylcholine, marked recontractions developed in untreated SHR but not in the other groups. Vasorelaxation to isoprenaline was also attenuated in SHR and was moderately improved by the atenolol therapy. 3. Arterial relaxation induced by return of potassium to the organ bath upon precontractions elicited by potassium-free solution were used to evaluate vascular smooth muscle Na+, K+-ATPase. The rate of potassium relaxation was fastest in WKY rats and was also faster in atenolol-treated than in untreated SHR. 4. The ability of vascular smooth muscle to sequester calcium was evaluated by eliciting responses to caffeine or noradrenaline after loading periods in different organ bath calcium concentrations. The subsequent contractions were lower in untreated SHR than in WKY rats, and augmented in SHR by the atenolol treatment. 5. Smooth muscle contractions to noradrenaline were comparable in SHR and WKY rats, while atenolol treatment slightly increased the maximal response to this agonist in SHR. Responses to potassium chloride were not affected by atenolol and contractions following cumulative re-addition of calcium to the organ bath after precontraction with potassium chloride and noradrenaline in calcium free solution were comparable in all study groups.6. In conclusion, the moderate antihypertensive effect of atenolol in SHR was accompanied by enhancement of beta-adrenoceptor-mediated and normalization of endothelium-dependent arterial relaxation.Furthermore, ability to sequester calcium into cellular stores, and function of Na+,K+-ATPase were augmented in vascular smooth muscle. Therefore, the present results suggest that the long-term blood pressure-lowering action of atenolol in this type of genetic hypertension is accompanied by improved arterial relaxation and normalization of endothelial function.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D008297 Male Males
D008638 Mesenteric Arteries Arteries which arise from the abdominal aorta and distribute to most of the intestines. Arteries, Mesenteric,Artery, Mesenteric,Mesenteric Artery
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic

Related Publications

M Kähönen, and H Mäkynen, and P Arvola, and I Pörsti
January 2002, Journal of hypertension,
M Kähönen, and H Mäkynen, and P Arvola, and I Pörsti
February 1978, European journal of pharmacology,
M Kähönen, and H Mäkynen, and P Arvola, and I Pörsti
September 2003, Journal of cardiovascular pharmacology,
M Kähönen, and H Mäkynen, and P Arvola, and I Pörsti
October 1994, Hypertension (Dallas, Tex. : 1979),
M Kähönen, and H Mäkynen, and P Arvola, and I Pörsti
February 1986, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
M Kähönen, and H Mäkynen, and P Arvola, and I Pörsti
September 1993, Hypertension (Dallas, Tex. : 1979),
M Kähönen, and H Mäkynen, and P Arvola, and I Pörsti
April 2019, The Journal of nutritional biochemistry,
M Kähönen, and H Mäkynen, and P Arvola, and I Pörsti
July 1988, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!