HLA molecular typing. 1993

E L Milford
Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.

HLA antigens are the major barrier to successful transplantation. Three of the seven heterodimers (HLA-A, -B, and -DR) contribute most to the immunogenicity of a mismatched organ. Although classical serology has been used in the past to phenotype donors and recipients, histocompatibility laboratories are increasingly turning to DNA-based methods to directly genotype patients and donors for the alleles of the HLA complex. Some methods are still evolving, while several others are established well enough to use in the clinical laboratory. The application to solid organ transplantation will result in greater accuracy and a better correlation between HLA matching and graft survival in the future. In fields such as bone marrow transplantation, where matching is critically important for prevention of graft-versus-host disease and engraftment, molecular HLA testing is already being mandated by the transplantation community.

UI MeSH Term Description Entries
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006650 Histocompatibility Testing Identification of the major histocompatibility antigens of transplant DONORS and potential recipients, usually by serological tests. Donor and recipient pairs should be of identical ABO blood group, and in addition should be matched as closely as possible for HISTOCOMPATIBILITY ANTIGENS in order to minimize the likelihood of allograft rejection. (King, Dictionary of Genetics, 4th ed) Crossmatching, Tissue,HLA Typing,Tissue Typing,Crossmatchings, Tissue,HLA Typings,Histocompatibility Testings,Testing, Histocompatibility,Testings, Histocompatibility,Tissue Crossmatching,Tissue Crossmatchings,Tissue Typings,Typing, HLA,Typing, Tissue,Typings, HLA,Typings, Tissue
D006680 HLA Antigens Antigens determined by leukocyte loci found on chromosome 6, the major histocompatibility loci in humans. They are polypeptides or glycoproteins found on most nucleated cells and platelets, determine tissue types for transplantation, and are associated with certain diseases. Human Leukocyte Antigen,Human Leukocyte Antigens,Leukocyte Antigens,HL-A Antigens,Antigen, Human Leukocyte,Antigens, HL-A,Antigens, HLA,Antigens, Human Leukocyte,Antigens, Leukocyte,HL A Antigens,Leukocyte Antigen, Human,Leukocyte Antigens, Human
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015345 Oligonucleotide Probes Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin. Oligodeoxyribonucleotide Probes,Oligonucleotide Probe,Oligoribonucleotide Probes,Probe, Oligonucleotide,Probes, Oligodeoxyribonucleotide,Probes, Oligonucleotide,Probes, Oligoribonucleotide
D016030 Kidney Transplantation The transference of a kidney from one human or animal to another. Grafting, Kidney,Renal Transplantation,Transplantation, Kidney,Transplantation, Renal,Kidney Grafting,Kidney Transplantations,Renal Transplantations,Transplantations, Kidney,Transplantations, Renal
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D017931 DNA Primers Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques. DNA Primer,Oligodeoxyribonucleotide Primer,Oligodeoxyribonucleotide Primers,Oligonucleotide Primer,Oligonucleotide Primers,Primer, DNA,Primer, Oligodeoxyribonucleotide,Primer, Oligonucleotide,Primers, DNA,Primers, Oligodeoxyribonucleotide,Primers, Oligonucleotide

Related Publications

E L Milford
January 2012, Methods in molecular biology (Clifton, N.J.),
E L Milford
January 1992, Immunogenetics,
E L Milford
December 1997, Transplantation,
E L Milford
January 2015, Methods in molecular biology (Clifton, N.J.),
E L Milford
April 1994, Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion,
E L Milford
January 2015, Transplantation,
E L Milford
January 2001, BMJ (Clinical research ed.),
E L Milford
July 1976, Archives of pathology & laboratory medicine,
E L Milford
January 1991, Nouvelle revue francaise d'hematologie,
E L Milford
June 2002, Zhongguo shi yan xue ye xue za zhi,
Copied contents to your clipboard!