How juxtaglomerular cells receive signals from the macula densa. 1994

T Okuda, and K Kurokawa
First Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.

UI MeSH Term Description Entries
D007606 Juxtaglomerular Apparatus A complex of cells consisting of juxtaglomerular cells, extraglomerular mesangium lacis cells, the macula densa of the distal convoluted tubule, and granular epithelial peripolar cells. Juxtaglomerular cells are modified SMOOTH MUSCLE CELLS found in the walls of afferent glomerular arterioles and sometimes the efferent arterioles. Extraglomerular mesangium lacis cells are located in the angle between the afferent and efferent glomerular arterioles. Granular epithelial peripolar cells are located at the angle of reflection of the parietal to visceral angle of the renal corpuscle. Apparatus, Juxtaglomerular
D008138 Loop of Henle The U-shaped portion of the renal tubule in the KIDNEY MEDULLA, consisting of a descending limb and an ascending limb. It is situated between the PROXIMAL KIDNEY TUBULE and the DISTAL KIDNEY TUBULE. Ascending Limb of Loop of Henle,Descending Limb of Loop of Henle,Henle Loop
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

T Okuda, and K Kurokawa
November 1963, Archives of internal medicine,
T Okuda, and K Kurokawa
January 2000, Advances in nephrology from the Necker Hospital,
T Okuda, and K Kurokawa
April 1991, The American journal of physiology,
T Okuda, and K Kurokawa
January 1967, Acta physiologica latino americana,
T Okuda, and K Kurokawa
May 2024, Nature reviews. Nephrology,
T Okuda, and K Kurokawa
November 1997, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
T Okuda, and K Kurokawa
June 1991, Kidney international. Supplement,
T Okuda, and K Kurokawa
September 1952, Revista clinica espanola,
Copied contents to your clipboard!