The role of sulfhydryl groups in D-aspartate and rubidium release from neonatal rat primary astrocyte cultures. 1994

M Aschner, and K J Mullaney, and M N Fehm, and D Vitarella, and D E Wagoner, and H K Kimelberg
Department of Pharmacology and Toxicology, Albany Medical College, NY 12208.

We have recently demonstrated that both methylmercury (MeHg) and mercuric chloride (MC) induce D-aspartate release from neonatal rat primary astrocyte cultures maintained in isotonic conditions. In the present study, we compare several other sulfhydryl-(-SH) selective alkylating reagents [methyl methanethiosulfonate (MMTS), N-ethylmaleimide (NEM), and iodoacetamide (IA)] in isotonic, as well as hypotonic conditions to discern the functional importance of -SH groups in [3H]D-aspartate and 86rubidium (86Rb) release from astrocytes. Treatment of astrocytes (5 min) in isotonic buffer with the hydrophobic reagent NEM (10 microM) caused a marked increase in 86Rb release but had no effect on [3H]D-aspartate release. Neither IA-, nor MMTS-treatment (both at 10 microM) induced increase in [3H]D-aspartate or 86Rb release in isotonic buffer. In hypotonic condition (-50 mM Na+), astrocytes were most sensitive to MC exposure (5 microM), exhibiting an increase in both [3H]D-aspartate and 86Rb efflux. The hydrophobic compounds MMTS and NEM, and the hydrophilic -SH modifying reagent, IA, attenuated the hypotonic-induced efflux of [3H]D-aspartate, in the absence of an effect on 86Rb release. These observations are consistent with a critical role for -SH groups both in basal (i.e. isotonic) and hypotonic-induced release of D-aspartate and Rb from astrocytes. Lack of uniformity of these effects may be attributed to site-specificity, related to the physicochemical properties of these -SH alkylating reagents.

UI MeSH Term Description Entries
D007038 Hypotonic Solutions Solutions that have a lesser osmotic pressure than a reference solution such as blood, plasma, or interstitial fluid. Solutions, Hypotonic
D007552 Isotonic Solutions Solutions having the same osmotic pressure as blood serum, or another solution with which they are compared. (From Grant & Hackh's Chemical Dictionary, 5th ed & Dorland, 28th ed) Solutions, Isotonic
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000477 Alkylating Agents Highly reactive chemicals that introduce alkyl radicals into biologically active molecules and thereby prevent their proper functioning. Many are used as antineoplastic agents, but most are very toxic, with carcinogenic, mutagenic, teratogenic, and immunosuppressant actions. They have also been used as components in poison gases. Alkylating Agent,Alkylator,Alkylators,Agent, Alkylating,Agents, Alkylating
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D012413 Rubidium An element that is an alkali metal. It has an atomic symbol Rb, atomic number 37, and atomic weight 85.47. It is used as a chemical reagent and in the manufacture of photoelectric cells.
D012414 Rubidium Radioisotopes Unstable isotopes of rubidium that decay or disintegrate emitting radiation. Rb atoms with atomic weights 79-84, and 86-95 are radioactive rubidium isotopes. Radioisotopes, Rubidium

Related Publications

M Aschner, and K J Mullaney, and M N Fehm, and D Vitarella, and D E Wagoner, and H K Kimelberg
June 1998, The American journal of physiology,
M Aschner, and K J Mullaney, and M N Fehm, and D Vitarella, and D E Wagoner, and H K Kimelberg
May 1993, Journal of neurochemistry,
M Aschner, and K J Mullaney, and M N Fehm, and D Vitarella, and D E Wagoner, and H K Kimelberg
December 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Aschner, and K J Mullaney, and M N Fehm, and D Vitarella, and D E Wagoner, and H K Kimelberg
September 1999, Brain research,
M Aschner, and K J Mullaney, and M N Fehm, and D Vitarella, and D E Wagoner, and H K Kimelberg
June 1992, Brain research,
M Aschner, and K J Mullaney, and M N Fehm, and D Vitarella, and D E Wagoner, and H K Kimelberg
April 1993, Brain research,
M Aschner, and K J Mullaney, and M N Fehm, and D Vitarella, and D E Wagoner, and H K Kimelberg
October 2001, Neurotoxicology,
M Aschner, and K J Mullaney, and M N Fehm, and D Vitarella, and D E Wagoner, and H K Kimelberg
May 2001, Brain research,
M Aschner, and K J Mullaney, and M N Fehm, and D Vitarella, and D E Wagoner, and H K Kimelberg
May 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Aschner, and K J Mullaney, and M N Fehm, and D Vitarella, and D E Wagoner, and H K Kimelberg
May 1999, The American journal of physiology,
Copied contents to your clipboard!