Interhemispheric connections in neonatal owl monkeys (Aotus trivirgatus) and galagos (Galago crassicaudatus). 1994

P D Beck, and J H Kaas
Department of Psychology, Vanderbilt University, Nashville, TN 37240.

Interhemispheric connections were studied by injecting a mixture of horseradish peroxidase (HRP) and wheatgerm agglutinin conjugated with horseradish peroxidase (WGA-HRP) into multiple sites in dorsolateral occipital and parietal cortex of one cerebral hemisphere of three galagos (Galago crassicaudatus) and two owl monkeys (Aotus trivirgatus) within seven days of birth. Cortex was either separated from the rest of the brain, flattened and cut parallel to the surface to aid reconstructing surface-view patterns of labeled neurons and processes, or cut in standard coronal or parasagittal planes to better reveal laminar patterns of connections. In both primate species, the surface-view pattern of callosal connections in infants was remarkably adult-like. In infant owl monkeys, callosal connections were concentrated along the margin of area 18 with area 17, and only a few labeled cells were found within area 17. Other visual areas including the second visual area, V-II, and the middle temporal visual area, MT, had patchy distributions of labeled neurons that extended over large parts of the visual field representations. Primary motor, auditory, and somatosensory fields also had patchy distributions of labeled neurons, with regions of areas 3b and adjoining somatosensory fields having few callosal connections in portions that appeared to correspond with representations of the hand and foot. Results were very similar in galagos, except that newborn galagos, as in adults, had a patchy distribution of callosally projecting neurons that extended well within area 17. Furthermore, the labeled neurons were concentrated in patches that aligned with the cytochrome oxidase blobs of area 17. Finally, callosal connections were concentrated in cytochrome oxidase poor regions of area 3b.

UI MeSH Term Description Entries
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D003337 Corpus Callosum Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure. Interhemispheric Commissure,Neocortical Commissure,Callosum, Corpus,Callosums, Corpus,Commissure, Interhemispheric,Commissure, Neocortical,Commissures, Interhemispheric,Commissures, Neocortical,Corpus Callosums,Interhemispheric Commissures,Neocortical Commissures
D005701 Galago A genus of the family Lorisidae having four species which inhabit the forests and bush regions of Africa south of the Sahara and some nearby islands. The four species are G. alleni, G. crassicaudatus, G. demidovii, and G. senegalensis. There is another genus, Euoticus, containing two species which some authors have included in the Galago genus. Bush Babies,Galagos,Babies, Bush,Baby, Bush,Bush Baby
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001029 Aotus trivirgatus A species in the family AOTIDAE, inhabiting the forested regions of Central and South America (from Panama to the Amazon). Vocalizations occur primarily at night when they are active, thus they are also known as Northern night monkeys. Humboldt's Night Monkey,Monkey, Northern Night,Night Monkey, Northern,Humboldt Night Monkey,Humboldts Night Monkey,Monkey, Humboldt's Night,Night Monkey, Humboldt's,Northern Night Monkey,Northern Night Monkeys
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

P D Beck, and J H Kaas
October 1970, Laboratory animal care,
P D Beck, and J H Kaas
January 1982, Laboratory animals,
P D Beck, and J H Kaas
April 1971, Laboratory animal science,
P D Beck, and J H Kaas
April 1981, Veterinary pathology,
P D Beck, and J H Kaas
June 1983, Physiology & behavior,
P D Beck, and J H Kaas
June 1970, Zeitschrift fur Tropenmedizin und Parasitologie,
P D Beck, and J H Kaas
July 1969, The Journal of tropical medicine and hygiene,
P D Beck, and J H Kaas
December 1970, Journal of the American Veterinary Medical Association,
Copied contents to your clipboard!