6-Thioguanine-induced growth arrest in 6-mercaptopurine-resistant human leukemia cells. 1994

C J Morgan, and R N Chawdry, and A R Smith, and G Siravo-Sagraves, and R W Trewyn
Tulane University School of Medicine, Department of Surgery, New Orleans, Louisiana 70112.

The thiopurines 6-thioguanine (6TG) and 6-mercaptopurine (6MP) are cytotoxic to proliferating cells by a mechanism involving incorporation into DNA via the purine salvage pathway, and resistance to these agents can be conferred by lack of the salvage pathway enzyme hypoxanthine-guanine phosphoribosyltransferase. However, human and murine hypoxanthine-guanine phosphoribosyltransferase-deficient leukemia cell lines have been shown to respond to 6TG by growth arrest and differentiation by a mechanism apparently not involving incorporation of 6TG into DNA. If so, leukemia cells resistant to 6MP should still respond to 6TG by growth arrest via an undescribed epigenetic mechanism. To test this, polyclonal 6MP-resistant variants were produced from three human leukemia cell lines, HL-60, U937, and CCRF-CEM. Treatment of both sensitive and resistant cells with 6TG induced growth arrest. The effect of 6TG in the 6MP-sensitive HL-60 and U937 cells was associated with significant loss of viability and DNA fragmentation. In contrast, the 6TG-treated 6MP-resistant cells exhibited a slower decline in viability and no DNA fragmentation. To identify the mechanism by which 6TG may induce growth arrest, tRNA was isolated from 6MP-resistant cells cultured for 48 h with 6TG. 6TG was found to be incorporated into tRNAs normally containing queuine in the anticodon wobble position. These studies may provide a basis for the development of new therapeutic regimens for the treatment of leukemia.

UI MeSH Term Description Entries
D007041 Hypoxanthine Phosphoribosyltransferase An enzyme that catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate and hypoxanthine, guanine, or MERCAPTOPURINE to the corresponding 5'-mononucleotides and pyrophosphate. The enzyme is important in purine biosynthesis as well as central nervous system functions. Complete lack of enzyme activity is associated with the LESCH-NYHAN SYNDROME, while partial deficiency results in overproduction of uric acid. EC 2.4.2.8. Guanine Phosphoribosyltransferase,HPRT,Hypoxanthine-Guanine Phosphoribosyltransferase,IMP Pyrophosphorylase,HGPRT,HPRTase,Hypoxanthine Guanine Phosphoribosyltransferase,Phosphoribosyltransferase, Guanine,Phosphoribosyltransferase, Hypoxanthine,Phosphoribosyltransferase, Hypoxanthine-Guanine,Pyrophosphorylase, IMP
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004354 Drug Screening Assays, Antitumor Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals. Anticancer Drug Sensitivity Tests,Antitumor Drug Screens,Cancer Drug Tests,Drug Screening Tests, Tumor-Specific,Dye Exclusion Assays, Antitumor,Anti-Cancer Drug Screens,Antitumor Drug Screening Assays,Tumor-Specific Drug Screening Tests,Anti Cancer Drug Screens,Anti-Cancer Drug Screen,Antitumor Drug Screen,Cancer Drug Test,Drug Screen, Anti-Cancer,Drug Screen, Antitumor,Drug Screening Tests, Tumor Specific,Drug Screens, Anti-Cancer,Drug Screens, Antitumor,Drug Test, Cancer,Drug Tests, Cancer,Screen, Anti-Cancer Drug,Screen, Antitumor Drug,Screens, Anti-Cancer Drug,Screens, Antitumor Drug,Test, Cancer Drug,Tests, Cancer Drug,Tumor Specific Drug Screening Tests
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D013866 Thioguanine An antineoplastic compound which also has antimetabolite action. The drug is used in the therapy of acute leukemia. 6-Thioguanine,2-Amino-6-Purinethiol,Lanvis,Tabloid,Thioguanin-GSK,Thioguanine Anhydrous,Thioguanine Hemihydrate,Thioguanine Monosodium Salt,Thioguanine Tabloid,Tioguanina Wellcome,Tioguanine,2 Amino 6 Purinethiol,6 Thioguanine,Anhydrous, Thioguanine,Thioguanin GSK,ThioguaninGSK
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015122 Mercaptopurine An antimetabolite antineoplastic agent with immunosuppressant properties. It interferes with nucleic acid synthesis by inhibiting purine metabolism and is used, usually in combination with other drugs, in the treatment of or in remission maintenance programs for leukemia. 6-Mercaptopurine,1,7-Dihydro-6H-purine-6-thione,6-Mercaptopurine Monohydrate,6-Thiohypoxanthine,6-Thiopurine,6H-Purine-6-thione, 1,7-dihydro-,BW 57-323H,Leupurin,Mecaptopurine Anhydrous,Mercaptopurina Wellcome,Puri-Nethol,Purimethol,Purinethol,6 Mercaptopurine,6 Mercaptopurine Monohydrate,6 Thiohypoxanthine,6 Thiopurine,BW 57 323H,BW 57323H
D015473 Leukemia, Promyelocytic, Acute An acute myeloid leukemia in which abnormal PROMYELOCYTES predominate. It is frequently associated with DISSEMINATED INTRAVASCULAR COAGULATION. Leukemia, Myeloid, Acute, M3,Leukemia, Progranulocytic,Myeloid Leukemia, Acute, M3,Progranulocytic Leukemia,Promyelocytic Leukemia, Acute,AML M3,Acute Promyelocytic Leukemia,Leukemia, Acute Promyelocytic,M3 ANLL,ANLL, M3,Acute Promyelocytic Leukemias

Related Publications

C J Morgan, and R N Chawdry, and A R Smith, and G Siravo-Sagraves, and R W Trewyn
July 2011, Biochemical and biophysical research communications,
C J Morgan, and R N Chawdry, and A R Smith, and G Siravo-Sagraves, and R W Trewyn
July 2013, Biochemical and biophysical research communications,
C J Morgan, and R N Chawdry, and A R Smith, and G Siravo-Sagraves, and R W Trewyn
January 1983, The Journal of pharmacy and pharmacology,
C J Morgan, and R N Chawdry, and A R Smith, and G Siravo-Sagraves, and R W Trewyn
October 1985, Biochemical pharmacology,
C J Morgan, and R N Chawdry, and A R Smith, and G Siravo-Sagraves, and R W Trewyn
January 1960, Clinical pharmacology and therapeutics,
C J Morgan, and R N Chawdry, and A R Smith, and G Siravo-Sagraves, and R W Trewyn
January 1980, Radiation research,
C J Morgan, and R N Chawdry, and A R Smith, and G Siravo-Sagraves, and R W Trewyn
January 1980, Leukemia research,
C J Morgan, and R N Chawdry, and A R Smith, and G Siravo-Sagraves, and R W Trewyn
December 1987, Journal of chromatography,
C J Morgan, and R N Chawdry, and A R Smith, and G Siravo-Sagraves, and R W Trewyn
April 2008, Toxicology in vitro : an international journal published in association with BIBRA,
C J Morgan, and R N Chawdry, and A R Smith, and G Siravo-Sagraves, and R W Trewyn
July 1980, Cancer letters,
Copied contents to your clipboard!