Characterization of ATP-induced vasodilation in the human forearm vascular bed. 1994

G A Rongen, and P Smits, and T Thien
Department of Medicine, University Hospital Nijmegen, The Netherlands.

BACKGROUND Animal data indicate that ATP derived from aggregating thrombocytes or endothelium induces an endothelium-dependent vasodilator response that is mediated by P2y-purinergic receptors and is reduced when high dosages are administered. This reduced vasodilator response to high ATP doses has been associated with the concomitant release of endothelium-derived contracting factors. In contrast to the endothelium-dependent vasodilator response, ATP as released from sympathetic nerve endings induces a P2x-purinergic receptor-mediated vasoconstrictor response that may contribute to the attenuated vasodilator response to high dosages of luminally applied ATP. The dual action of ATP might be important in the pathophysiology of disease states characterized by an impaired endothelial function and increased thrombocyte aggregation. This study was performed to characterize the vascular response to ATP in humans. RESULTS The brachial artery was cannulated in 50 healthy male volunteers (age, 18 to 44 years) for drug infusion and measurement of mean arterial pressure. Forearm blood flow was recorded by venous occlusion strain-gauge plethysmography. ATP induced a dose-dependent vasodilator response that was significantly higher than the effect of equimolar adenosine infusion and that was not reduced by concomitant infusion of the P1-purinergic receptor antagonist theophylline. The infusion of the NO synthase antagonist NG-monomethyl-L-arginine (L-NMMA) reduced the average fall in forearm vascular resistance (FVR) to acetylcholine (-59 +/- 6% [mean +/- SEM] versus -42 +/- 8%; P < .05; N = 10) but did not affect the vasodilator response to ATP (-68 +/- 3% versus -64 +/- 6%; P > .1; N = 10) or sodium nitroprusside (SNP; -53 +/- 3% versus -49 +/- 4%; P > .01; N = 6). The L-NMMA-induced increase in FVR appeared to be related to the type of vasodilator pretreatment, being 94.7 +/- 16.7%, 44.9 +/- 8.7%, and 40.8 +/- 7.3% for acetylcholine, ATP, and SNP pretreatment, respectively (P < .01 for acetylcholine versus ATP and SNP; P > .1 for ATP versus SNP). In contrast to animal data, high dosages of intra-arterially infused ATP (up to 1000 micrograms.100 mL forearm-1.min-1) did not reveal a reduction in the forearm vasodilator response but appeared to be similar to the maximal forearm vasodilation as observed during postocclusive reactive hyperemia. CONCLUSIONS These observations indicate that ATP induces a potent dose-dependent vasodilator response that is not mediated by P1-purinergic receptor stimulation or by the release of nitric oxide. Moreover, in healthy volunteers, the vasodilator response to high intra-arterial dosages of ATP is not reduced by the release of endothelium-derived contracting factors or by the stimulation of P2x-purinergic receptors on the smooth muscle cells.

UI MeSH Term Description Entries
D007269 Injections, Intra-Arterial Delivery of drugs into an artery. Injections, Intraarterial,Intra-Arterial Injections,Intraarterial Injections,Injection, Intra-Arterial,Injection, Intraarterial,Injections, Intra Arterial,Intra Arterial Injections,Intra-Arterial Injection,Intraarterial Injection
D008297 Male Males
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D001808 Blood Vessels Any of the tubular vessels conveying the blood (arteries, arterioles, capillaries, venules, and veins). Blood Vessel,Vessel, Blood,Vessels, Blood
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005542 Forearm Part of the upper extremity in humans and primates extending from the ELBOW to the WRIST. Antebrachium,Antebrachiums,Forearms
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

G A Rongen, and P Smits, and T Thien
November 1995, Journal of cardiovascular pharmacology,
G A Rongen, and P Smits, and T Thien
January 2003, Clinical science (London, England : 1979),
G A Rongen, and P Smits, and T Thien
January 2002, Medical principles and practice : international journal of the Kuwait University, Health Science Centre,
G A Rongen, and P Smits, and T Thien
January 1978, Circulation research,
G A Rongen, and P Smits, and T Thien
April 1997, Cardiovascular research,
G A Rongen, and P Smits, and T Thien
November 2000, American journal of hypertension,
G A Rongen, and P Smits, and T Thien
December 1988, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
G A Rongen, and P Smits, and T Thien
November 2011, Experimental physiology,
G A Rongen, and P Smits, and T Thien
June 2005, The Netherlands journal of medicine,
Copied contents to your clipboard!