Functional reconstitution of ATP-dependent transporters from the solubilized hepatocyte canalicular membrane. 1994

M Büchler, and M Böhme, and H Ortlepp, and D Keppler
Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Germany.

The hepatocyte canalicular membrane contains several primary-active ATP-dependent export carriers including one for bile salts and one for leukotriene C4 and related conjugates. The molecular identity of both transporters has not been fully elucidated. To establish a transport assay that allows the purification and identification of the proteins involved in ATP-dependent bile salt transport and in leukotriene C4 transport, we reconstituted solubilized hepatocyte canalicular membranes into phospholipid bilayers using a rapid dilution method. The proteoliposomes formed exhibited both [3H]taurocholate and [3H]leukotriene C4 uptake, which was much higher in the presence of ATP than in the presence of the non-hydrolyzable ATP-analog AdoPP[CH2]P or in the absence of nucleotides. Nucleotide requirement and osmotic sensitivity of [3H]taurocholate transport indicates true transport into the vesicle lumen. Optimized conditions for reconstitution included the addition of a high concentration of an osmolyte (glycerol) and the presence of exogenous phospholipids (0.3%) during solubilization. Highest transport rates were obtained by reconstitution into acetone/ether-precipitated Escherichia coli phospholipid supplemented with 20% cholesterol and by use of octylglucoside concentrations between 30 mM and 50 mM. Taurocholate transport was non-competitively inhibited by vanadate (Ki = 39 microM). The kinetic parameters of cyclosporin A inhibition (Ki = 2.6 microM for taurocholate and 4.3 microM for leukotriene C4 transport) as well as the affinities of taurocholate (Km = 12 microM) and leukotriene C4 (Km = 0.5 microM) in the proteoliposome system indicate that the reconstitution resulted in functionally active transport systems, which are representative of ATP-dependent transport in the intact plasma membrane.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011510 Proteolipids Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

M Büchler, and M Böhme, and H Ortlepp, and D Keppler
April 1995, Physiological reviews,
M Büchler, and M Böhme, and H Ortlepp, and D Keppler
January 2005, Methods in enzymology,
M Büchler, and M Böhme, and H Ortlepp, and D Keppler
June 1993, European journal of biochemistry,
M Büchler, and M Böhme, and H Ortlepp, and D Keppler
February 1985, European journal of biochemistry,
M Büchler, and M Böhme, and H Ortlepp, and D Keppler
January 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
M Büchler, and M Böhme, and H Ortlepp, and D Keppler
October 1991, The Journal of biological chemistry,
M Büchler, and M Böhme, and H Ortlepp, and D Keppler
February 1980, The Journal of cell biology,
M Büchler, and M Böhme, and H Ortlepp, and D Keppler
January 2003, Methods in molecular biology (Clifton, N.J.),
M Büchler, and M Böhme, and H Ortlepp, and D Keppler
January 1997, The American journal of physiology,
Copied contents to your clipboard!