Immunological approach to inhibit formation of anti-antibodies to allo- and xenogeneic anti-T cell immunoglobulin. 1994

J Mysliwietz, and S Thierfelder, and R Mocikat, and E Kremmer
GSF, Institut für Immunologie, München, Germany.

Inhibitory anti-antibodies induced in patients by xenogeneic or even by humanized anti-T cell antibodies remain an unresolved problem. Mice also produce anti-antibodies following injection of xeno- or allogeneic anti-T cell antibodies. Here we report a principle based on sequentially applied anti-T cell antibodies generated in different species, which results in suppressed anti-antibody formation and prolonged immunosuppression. Thus, a single priming injection in mice of mouse (MmT1 or MmT5 differing by idiotype only) or of rat (RmT1) anti-mouse Thy-1 monoclonal antibodies (mAb) or of rat anti-mouse L3T4 + Ly-2 (RmCD4 + CD8) mAb suppressed anti-antibody formation against subsequent booster injections of one of the above antibodies, provided that they differed in species origin from the priming antibody. Correspondingly, a sixfold and longer prolongation of 50% survival of fully mismatched skin grafts was observed. Less or no anti-antibody suppression and little prolongation of graft survival was obtained if the 'first' and the 'second' (and following) antibody injections were of the same species, differing by iso- or idiotype only. Finally, the suppressive principle did not manifest itself at all if the initial antibody injection included both the first and second antibody. These findings are discussed with reference to earlier studies on hapten/carrier effects as well as on immunosuppression attributed to 'non-depleting' rat anti-CD4/CD8 T cell antibodies.

UI MeSH Term Description Entries
D007130 Immunoglobulin Idiotypes Unique genetically-controlled determinants present on ANTIBODIES whose specificity is limited to a single group of proteins (e.g., another antibody molecule or an individual myeloma protein). The idiotype appears to represent the antigenicity of the antigen-binding site of the antibody and to be genetically codetermined with it. The idiotypic determinants have been precisely located to the IMMUNOGLOBULIN VARIABLE REGION of both immunoglobin polypeptide chains. Idiotypes, Immunoglobulin,Ig Idiotypes,Idiotype, Ig,Idiotype, Immunoglobulin,Idiotypes, Ig,Ig Idiotype,Immunoglobulin Idiotype
D007165 Immunosuppression Therapy Deliberate prevention or diminution of the host's immune response. It may be nonspecific as in the administration of immunosuppressive agents (drugs or radiation) or by lymphocyte depletion or may be specific as in desensitization or the simultaneous administration of antigen and immunosuppressive drugs. Antirejection Therapy,Immunosuppression,Immunosuppressive Therapy,Anti-Rejection Therapy,Therapy, Anti-Rejection,Therapy, Antirejection,Anti Rejection Therapy,Anti-Rejection Therapies,Antirejection Therapies,Immunosuppression Therapies,Immunosuppressions,Immunosuppressive Therapies,Therapies, Immunosuppression,Therapies, Immunosuppressive,Therapy, Immunosuppression,Therapy, Immunosuppressive
D008297 Male Males
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D005260 Female Females
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000888 Antibodies, Anti-Idiotypic Antibodies which react with the individual structural determinants (idiotopes) on the variable region of other antibodies. Anti-Antibodies,Anti-Idiotype Antibodies,Antibodies, Internal Image,Antigamma Globulin Antibodies,Antiglobulins,Anti Antibodies,Anti-gamma Globulin Antibodies,Anti Idiotype Antibodies,Anti gamma Globulin Antibodies,Anti-Idiotypic Antibodies,Antibodies, Anti,Antibodies, Anti Idiotypic,Antibodies, Anti-Idiotype,Antibodies, Anti-gamma Globulin,Antibodies, Antigamma Globulin,Globulin Antibodies, Anti-gamma,Globulin Antibodies, Antigamma,Image Antibodies, Internal,Internal Image Antibodies
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens

Related Publications

J Mysliwietz, and S Thierfelder, and R Mocikat, and E Kremmer
February 1978, Clinical and experimental immunology,
J Mysliwietz, and S Thierfelder, and R Mocikat, and E Kremmer
November 1980, Journal of immunology (Baltimore, Md. : 1950),
J Mysliwietz, and S Thierfelder, and R Mocikat, and E Kremmer
September 1976, Nature,
J Mysliwietz, and S Thierfelder, and R Mocikat, and E Kremmer
February 2013, Acta pharmacologica Sinica,
J Mysliwietz, and S Thierfelder, and R Mocikat, and E Kremmer
January 1976, Postgraduate medical journal,
J Mysliwietz, and S Thierfelder, and R Mocikat, and E Kremmer
June 1997, Journal of neuroscience research,
J Mysliwietz, and S Thierfelder, and R Mocikat, and E Kremmer
August 1983, Cellular immunology,
J Mysliwietz, and S Thierfelder, and R Mocikat, and E Kremmer
January 1978, Scandinavian journal of immunology,
J Mysliwietz, and S Thierfelder, and R Mocikat, and E Kremmer
February 1989, Transplantation proceedings,
J Mysliwietz, and S Thierfelder, and R Mocikat, and E Kremmer
February 1994, Infection and immunity,
Copied contents to your clipboard!