Response of Leishmania chagasi promastigotes to oxidant stress. 1994

M E Wilson, and K A Andersen, and B E Britigan
Veterans Affairs Medical Center, Iowa City, Iowa 52242.

At the onset of infection, Leishmania promastigotes are phagocytized by mammalian macrophages. They must survive despite exposure to toxic oxidants such as hydrogen peroxide (H2O2) and superoxide (.O2-) generated during phagocytosis. We investigated the effects of these oxidants on Leishmania chagasi promastigotes and promastigote mechanisms for oxidant resistance. According to spin trapping and electron paramagnetic resonance spectrometry, .O2- could be generated by exposure of promastigotes to the redox-cycling compound menadione. Incubation in either menadione or H2O2 caused a concentration-dependent loss of promastigote viability. However, incubation in sublethal concentrations of H2O2 or menadione caused a stress response in promastigotes. This oxidant-induced response was associated with an increase in the amount of heat shock protein hsp70. Induction of a stress response by exposure of promastigotes either to heat shock or to sublethal oxidants (H2O2 or menadione) caused promastigotes to become more resistant to H2O2 toxicity. Sublethal menadione also caused promastigotes to become more virulent in a BALB/c mouse model of leishmaniasis. We previously correlated H2O2 cytotoxicity for promastigotes with the formation of hydroxyl radical (.OH) from H2O2. However, according to electron paramagnetic resonance spectrometry, the increase in H2O2 resistance after exposure to sublethal oxidants was not associated with diminished generation (i.e., scavenging) of .OH. These data suggest that there is a cross-protective stress response that occurs after exposure of L. chagasi promastigotes to heat shock or to sublethal H2O2 or .O2-, exposures that also occur during natural infection. This response results in increased resistance to H2O2 toxicity and increased virulence for a mammalian host.

UI MeSH Term Description Entries
D007891 Leishmania A genus of flagellate protozoa comprising several species that are pathogenic for humans. Organisms of this genus have an amastigote and a promastigote stage in their life cycles. As a result of enzymatic studies this single genus has been divided into two subgenera: Leishmania leishmania and Leishmania viannia. Species within the Leishmania leishmania subgenus include: L. aethiopica, L. arabica, L. donovani, L. enrietti, L. gerbilli, L. hertigi, L. infantum, L. major, L. mexicana, and L. tropica. The following species are those that compose the Leishmania viannia subgenus: L. braziliensis, L. guyanensis, L. lainsoni, L. naiffi, and L. shawi. Leishmania (Leishmania),Leishmania (Viannia),Leishmania leishmania,Leishmania viannia,Leishmania leishmanias,Leishmania viannias,Leishmanias,Leishmanias (Leishmania),Leishmanias (Viannia),leishmanias, Leishmania,viannias, Leishmania
D007896 Leishmaniasis A disease caused by any of a number of species of protozoa in the genus LEISHMANIA. There are four major clinical types of this infection: cutaneous (Old and New World) (LEISHMANIASIS, CUTANEOUS), diffuse cutaneous (LEISHMANIASIS, DIFFUSE CUTANEOUS), mucocutaneous (LEISHMANIASIS, MUCOCUTANEOUS), and visceral (LEISHMANIASIS, VISCERAL). Leishmania Infection,Infection, Leishmania,Infections, Leishmania,Leishmania Infections,Leishmaniases
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014812 Vitamin K A lipid cofactor that is required for normal blood clotting. Several forms of vitamin K have been identified: VITAMIN K 1 (phytomenadione) derived from plants, VITAMIN K 2 (menaquinone) from bacteria, and synthetic naphthoquinone provitamins, VITAMIN K 3 (menadione). Vitamin K 3 provitamins, after being alkylated in vivo, exhibit the antifibrinolytic activity of vitamin K. Green leafy vegetables, liver, cheese, butter, and egg yolk are good sources of vitamin K.
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

M E Wilson, and K A Andersen, and B E Britigan
October 2010, Parasitology research,
M E Wilson, and K A Andersen, and B E Britigan
April 1996, Antimicrobial agents and chemotherapy,
M E Wilson, and K A Andersen, and B E Britigan
June 1982, Infection and immunity,
M E Wilson, and K A Andersen, and B E Britigan
July 2013, Infection and immunity,
M E Wilson, and K A Andersen, and B E Britigan
December 1987, Experimental parasitology,
M E Wilson, and K A Andersen, and B E Britigan
June 1990, Journal of immunology (Baltimore, Md. : 1950),
M E Wilson, and K A Andersen, and B E Britigan
January 2001, Molecular and biochemical parasitology,
M E Wilson, and K A Andersen, and B E Britigan
November 2016, Proteomics. Clinical applications,
Copied contents to your clipboard!