Establishment of a human small-cell lung-cancer subline resistant to okadaic acid. 1994

Y Takeda, and K Nishio, and N Kubota, and K Miura, and T Morikage, and T Ohmori, and S Kudoh, and H Niitani, and N Saijo
Pharmacology Division, National Cancer Center Research Institute, Tokyo, Japan.

Okadaic acid (OA), a specific protein phosphatase inhibitor, has various biological functions. To elucidate the mechanism of OA resistance, we have established a small-cell lung-cancer subline (H69/OA100) resistant to the growth-inhibitory effect of OA; this was done by using the parental cell line (H69) and increasing the concentration of OA. H69/OA100 was about 8 times more resistant to OA than H69. Intracellular retention of the fluorescent OA derivative in H69/OA100 was the same as that in H69. The catalytic activity of protein phosphatase from H69/OA100 was significantly reduced compared with that from H69. The protein phosphatase from H69/OA100 was 3.6 times more resistant to OA than that from H69. We examined the effect of OA on the activity of the immunoprecipitated protein phosphatase type I (PPI) and type 2A (PP2A) from the 2 cell lines. The PPI and PP2A from H69/OA100 showed more resistance to OA than those from H69. We next examined the effect of OA on the cell cycle of H69 and H69/OA100. In H69, G2/M block was observed at an OA concentration of 30 ng/ml whereas in H69/OA100, no G2/M block was observed at concentrations up to 100 ng/ml OA. We finally evaluated the amount of p34cdc2 kinase expression and the phosphorylation status of p34cdc2. There was no difference in p34cdc2 expression between H69 and H69/OA100 at several concentrations of OA. However, dephosphorylation of p34cdc2 was observed at 30 ng/ml OA in H69, but not in H69/OA100 up to 100 ng/ml OA. These data suggest that the resistance to OA and the resistance of the cell-cycle block to OA in H69/OA100 might be due to alteration of protein phosphatase activity.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D004988 Ethers, Cyclic Compounds of the general formula R-O-R arranged in a ring or crown formation. Cyclic Ether,Cyclic Ethers,Ether, Cyclic
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

Y Takeda, and K Nishio, and N Kubota, and K Miura, and T Morikage, and T Ohmori, and S Kudoh, and H Niitani, and N Saijo
April 1986, Acta medica Okayama,
Y Takeda, and K Nishio, and N Kubota, and K Miura, and T Morikage, and T Ohmori, and S Kudoh, and H Niitani, and N Saijo
June 1993, Acta medica Okayama,
Y Takeda, and K Nishio, and N Kubota, and K Miura, and T Morikage, and T Ohmori, and S Kudoh, and H Niitani, and N Saijo
August 2005, International journal of cancer,
Y Takeda, and K Nishio, and N Kubota, and K Miura, and T Morikage, and T Ohmori, and S Kudoh, and H Niitani, and N Saijo
December 1992, Anti-cancer drug design,
Y Takeda, and K Nishio, and N Kubota, and K Miura, and T Morikage, and T Ohmori, and S Kudoh, and H Niitani, and N Saijo
January 2000, Anticancer research,
Y Takeda, and K Nishio, and N Kubota, and K Miura, and T Morikage, and T Ohmori, and S Kudoh, and H Niitani, and N Saijo
July 2001, Cell death and differentiation,
Y Takeda, and K Nishio, and N Kubota, and K Miura, and T Morikage, and T Ohmori, and S Kudoh, and H Niitani, and N Saijo
June 1992, Acta medica Okayama,
Y Takeda, and K Nishio, and N Kubota, and K Miura, and T Morikage, and T Ohmori, and S Kudoh, and H Niitani, and N Saijo
April 1986, Acta medica Okayama,
Y Takeda, and K Nishio, and N Kubota, and K Miura, and T Morikage, and T Ohmori, and S Kudoh, and H Niitani, and N Saijo
October 2011, Cancer letters,
Y Takeda, and K Nishio, and N Kubota, and K Miura, and T Morikage, and T Ohmori, and S Kudoh, and H Niitani, and N Saijo
January 2001, TheScientificWorldJournal,
Copied contents to your clipboard!