Recombination promoted by superhelical DNA and the recA gene of Escherichia coli. 1976

W K Holloman, and C M Radding

When a mixture of superhelical DNA (RFI) of phage phiX174 am3 and fragments of single-stranded DNA from wild-type phiX174 was added to spheroplasts of E. coli carrying an amber suppressor, several percent of the progeny phage were recombinant. The yield of wild-type progeny was 10(3) to 10(4) times lower when the fragments came from phiX174 am3 or phage G4 am+, or when fragments were absent. Fewer recombinants were produced in proportion to the decrease in the fraction of RFI in samples treated with S1 nuclease, whereas the total yield of phage did not decrease. Transfection by fragments and superhelical DNA produced 20 to 100 times more recombinants than transfection by fragments and either nicked circular DNA or relaxed closed circular DNA. Transfection of a recA- strain by RFI DNA and fragments yielded 5-10% as many recombinants as transfection of a rec+ strain. This partial requirement for recA was bypassed by transfection with complexes of RFI AM3 DNA and am+ fragments made in vitro.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

W K Holloman, and C M Radding
April 1978, Journal of molecular biology,
W K Holloman, and C M Radding
January 1981, Cold Spring Harbor symposia on quantitative biology,
W K Holloman, and C M Radding
April 1979, Proceedings of the National Academy of Sciences of the United States of America,
W K Holloman, and C M Radding
January 1983, Cold Spring Harbor symposia on quantitative biology,
W K Holloman, and C M Radding
November 1989, The Journal of biological chemistry,
W K Holloman, and C M Radding
August 1981, Proceedings of the National Academy of Sciences of the United States of America,
W K Holloman, and C M Radding
August 1992, Nucleic acids research,
W K Holloman, and C M Radding
January 1982, The Journal of biological chemistry,
W K Holloman, and C M Radding
September 1979, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!