Hydrolysis and transpeptidation of peptide substrates by acetyl-pepsin. 1976

P G Richman, and J S Fruton

Treatment of swine pepsin with acetylimidazole to acetylate approximately five of its 16 tyrosyl residues causes a significant enhancement of catalytic efficiency (kcat/Km) toward substrates such as dansyl-glycyl-glycyl-L-phenylalanyl-L-phenylalanine 3-(4-pyridyl)propyl ester and benzyloxy-carbonyl-(glycyl)n-p-nitroLphenylalnyl-Lphenylalanyl-L-tyrosine (where n = 0, 1,2). Stopped-flow kinetic studies, under conditions of enzyme excess, with the dansyl peptide have shown that, as with untreated pepsin, the rate-limiting step in the over-all catalytic process is associated with the decomposition of the first detectable enzyme-substrate complex, whose dissociation constant is approximately equal to the Km found in steady-state kinetic experiments. With substrates of the type benzoyl-(glycyl)n-nitro-L-phenylalanyl-L-tyrosine, an increase in the chain length of the peptide leads to an increase in the value of kcat/Km, supporting the view that secondary enzyme-substrate interactions may produce at the extended active site conformational changes that are reflected in higher catalytic efficiency. This effect is more marked with acetyl-pepsin than with untreated pepsin, and suggests that the conformational mobility of the active site is increased by partial acetylation. Acetyl-pepsin is less effective than untreated pepsin in catalyzing transpeptidation reactions in which acetyl-L-phenylalanyl-L-tyrosine and benzyloxycarbonyl-(glycyl)n-p-nitro-L-phenylalanine are the reactants; this finding is consistent with the more rapid hydrolysis of the product of transpeptidation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010434 Pepsin A Formed from pig pepsinogen by cleavage of one peptide bond. The enzyme is a single polypeptide chain and is inhibited by methyl 2-diaazoacetamidohexanoate. It cleaves peptides preferentially at the carbonyl linkages of phenylalanine or leucine and acts as the principal digestive enzyme of gastric juice. Pepsin,Pepsin 1,Pepsin 3
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog

Related Publications

P G Richman, and J S Fruton
June 1988, The Journal of biological chemistry,
P G Richman, and J S Fruton
June 1956, The Biochemical journal,
P G Richman, and J S Fruton
July 1960, Biochimica et biophysica acta,
P G Richman, and J S Fruton
January 1966, Biokhimiia (Moscow, Russia),
P G Richman, and J S Fruton
January 1954, Bulletin de la Societe de chimie biologique,
P G Richman, and J S Fruton
September 1975, Proceedings of the National Academy of Sciences of the United States of America,
P G Richman, and J S Fruton
January 1954, Bulletin de la Societe de chimie biologique,
P G Richman, and J S Fruton
March 1962, The Journal of general physiology,
Copied contents to your clipboard!