Respiratory mechanics of horses measured by conventional and forced oscillation techniques. 1994

S S Young, and D Tesarowski
Department of Clinical Studies, University of Guelph, Ontario, Canada.

Respiratory mechanics were compared using conventional and forced oscillation techniques in six conscious horses and a mechanical model of the equine respiratory system. The parameters calculated from conventional airflow and esophageal pressure measurements were pulmonary resistance and dynamic compliance. The impedance of the respiratory system was measured at 1, 2, and 3 Hz with the forced oscillation technique, and respiratory system resistance, compliance, inertance, and resonant frequency were calculated. Pulmonary resistance was 1.0 +/- 0.3 cmH2O.l-1.s, and pulmonary dynamic compliance was 2.4 +/- 0.6 l/cmH2O. With the use of the forced oscillation system, respiratory resistance was 1.61 +/- 0.50 cmH2O.l-1.s at 1 Hz, compliance was 0.195 +/- 0.075 l/cmH2O, inertance was 0.026 +/- 0.0095 cmH2O.l-1.s2, and resonant frequency was 2.40 +/- 0.25 Hz. Data collected from a model of the respiratory system showed a close correlation between resistance and compliance measured with the two systems. This study demonstrates that the forced oscillation technique is a useful method for noninvasive measurement of respiratory mechanics in horses.

UI MeSH Term Description Entries
D008170 Lung Compliance The capability of the LUNGS to distend under pressure as measured by pulmonary volume change per unit pressure change. While not a complete description of the pressure-volume properties of the lung, it is nevertheless useful in practice as a measure of the comparative stiffness of the lung. (From Best & Taylor's Physiological Basis of Medical Practice, 12th ed, p562) Compliance, Lung,Compliances, Lung,Lung Compliances
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D012129 Respiratory Function Tests Measurement of the various processes involved in the act of respiration: inspiration, expiration, oxygen and carbon dioxide exchange, lung volume and compliance, etc. Lung Function Tests,Pulmonary Function Tests,Function Test, Pulmonary,Function Tests, Pulmonary,Pulmonary Function Test,Test, Pulmonary Function,Tests, Pulmonary Function,Function Test, Lung,Function Test, Respiratory,Function Tests, Lung,Function Tests, Respiratory,Lung Function Test,Respiratory Function Test,Test, Lung Function,Test, Respiratory Function,Tests, Lung Function,Tests, Respiratory Function
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000403 Airway Resistance Physiologically, the opposition to flow of air caused by the forces of friction. As a part of pulmonary function testing, it is the ratio of driving pressure to the rate of air flow. Airway Resistances,Resistance, Airway,Resistances, Airway
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015656 Respiratory Mechanics The physical or mechanical action of the LUNGS; DIAPHRAGM; RIBS; and CHEST WALL during respiration. It includes airflow, lung volume, neural and reflex controls, mechanoreceptors, breathing patterns, etc. Breathing Mechanics,Breathing Mechanic,Mechanic, Breathing,Mechanic, Respiratory,Mechanics, Breathing,Mechanics, Respiratory,Respiratory Mechanic

Related Publications

S S Young, and D Tesarowski
January 2013, Respiratory physiology & neurobiology,
S S Young, and D Tesarowski
July 1998, The European respiratory journal,
S S Young, and D Tesarowski
January 1981, Human physiology,
S S Young, and D Tesarowski
January 1984, Respiration physiology,
S S Young, and D Tesarowski
January 1971, Bulletin de physio-pathologie respiratoire,
S S Young, and D Tesarowski
January 2001, Critical care (London, England),
S S Young, and D Tesarowski
January 1993, Meditsinskaia tekhnika,
S S Young, and D Tesarowski
January 2009, Clinics (Sao Paulo, Brazil),
Copied contents to your clipboard!